Yolo Tracking项目中OCSORT和DeepOCSORT的输入格式问题解析
概述
在计算机视觉目标跟踪领域,OCSORT和DeepOCSORT是两种广泛使用的多目标跟踪算法。在使用Yolo Tracking项目中的这些跟踪模块时,开发者需要特别注意输入检测结果的格式要求。本文将详细分析这些跟踪模块对输入数据的格式规范,帮助开发者避免常见的使用错误。
输入格式要求
OCSORT和DeepOCSORT跟踪模块对输入检测结果的格式有严格要求:
-
正确的输入格式:检测结果必须是numpy数组,格式为
[[x1,y1,x2,y2,score,class],...],即每个检测框需要包含6个元素:左上角x坐标、左上角y坐标、右下角x坐标、右下角y坐标、置信度分数和类别。 -
常见错误格式:开发者容易犯的错误是只提供5个元素
[[x1,y1,x2,y2,score],...],缺少类别信息。这种格式会导致跟踪模块抛出断言错误。 -
空检测处理:当帧中没有检测到任何目标时,应该使用
np.empty((0, 6))作为输入,保持6列的格式。
问题根源分析
该问题的产生源于文档与实际实现的不一致:
-
文档描述:项目文档中说明输入格式为5元素的检测框
[[x1,y1,x2,y2,score],...],这与实际实现不符。 -
代码实现:跟踪模块内部实现会检查输入数组的第二维度是否为6,如果不符合就会抛出断言错误。
-
历史原因:可能早期版本确实只需要5个元素,但随着功能扩展,增加了对类别信息的支持,而文档没有相应更新。
解决方案
开发者在使用这些跟踪模块时应注意:
-
确保输入格式正确:无论使用何种检测器,输出到跟踪模块的结果必须包含6个元素,包括类别信息。
-
处理空检测情况:使用
np.empty((0, 6))来表示没有检测结果的情况。 -
文档更新:项目维护者已经注意到这个问题,计划将形状检查移到基类并修正文档错误。
实际应用示例
以下是一个正确使用DeepOCSORT的示例代码片段:
import numpy as np
import cv2
from boxmot import DeepOCSORT
# 初始化跟踪模块
tracker = DeepOCSORT(model_weights='osnet_x0_25_msmt17.pt', device='cpu')
# 模拟检测结果 - 注意包含6个元素
dets = np.array([[100, 150, 300, 400, 0.85, 0]]) # 最后一个是类别
# 处理帧
frame = cv2.imread('example.jpg')
if dets.size > 0:
tracks = tracker.update(dets, frame)
else:
tracks = tracker.update(np.empty((0, 6)), frame)
总结
在使用Yolo Tracking项目中的OCSORT和DeepOCSORT跟踪模块时,开发者必须确保输入检测结果的格式正确。当前实现要求每个检测框包含6个元素,包括边界框坐标、置信度分数和类别信息。项目维护者已经意识到文档与实现不一致的问题,并计划在未来的版本中修复这一差异。对于开发者来说,遵循正确的输入格式规范是确保跟踪算法正常工作的关键。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00