Tenstorrent Metal v0.59.0-rc9 版本技术解析与功能演进
Tenstorrent Metal 项目作为一款面向AI加速的高性能计算框架,其最新发布的v0.59.0-rc9候选版本带来了一系列重要的功能增强和问题修复。本文将深入解析该版本的技术亮点和架构演进。
核心架构优化
本次版本在底层架构方面进行了多项重要改进。首先是对设备初始化流程的优化,将固件构建和L1/DRAM清除操作从设备初始化阶段移至MetalContext初始化阶段,这一调整显著提升了设备启动效率。同时,项目团队重构了缓冲区管理机制,移除了主机端缓冲区分配/释放的概念,使内存管理更加高效和统一。
在分布式计算方面,新增了对ND分片(多维分片)的支持,为mesh设备和缓冲区提供了更灵活的数据分布策略。特别值得注意的是对4x2 mesh分割为两个2x2 mesh的新mesh描述符支持,这为大规模分布式计算提供了更精细的拓扑控制能力。
计算功能增强
计算核心部分,本版本对多个关键算子进行了优化和扩展。Topk算子现在支持子核心网格(sub_core_grid)并充分利用列中可用核心,显著提升了处理能力。Argmax算子则根据NOC宽度调整了每核心处理单元数,实现了更好的资源利用率。
在数据类型支持方面,新增了对uint16的乘法及位运算(OR/XOR)支持,扩展了框架的应用场景。同时修复了Untilize操作在每核心输出通道数大于256时的处理问题,确保了大规模数据处理的正确性。
性能优化与稳定性提升
性能优化是本版本的重点之一。通过实现批量转置(batched transpose)优化了ttnn.concat操作的性能。针对Blackhole架构特别优化了以太网微基准测试,解决了可能出现的挂起问题。跟踪缓冲区大小的增加也为性能分析提供了更充分的数据支持。
稳定性方面,项目团队修复了多个边界条件问题,包括处理小通道数时的切片写入问题,以及当split_reader启用且act_block_h=1时Conv2d的边缘情况处理。这些改进显著提升了框架在极端条件下的稳定性。
新模型与演示支持
v0.59.0-rc9版本加强了对多种AI模型的支持。Mobilenetv2和VGG_Unet等模型的演示支持已经就绪,为计算机视觉应用提供了更多选择。在自然语言处理方面,Llama模型的多个版本(包括3.1和3.3)获得了更好的支持,特别是在TG(可能是Tensor Graph)解码方面的改进解决了长序列(>4k)处理时的挂起问题。
特别值得一提的是3-tier训练架构的实现,为分布式训练提供了新的范例。同时,对VAE解码器的集成使SDv1-4(可能是Stable Diffusion 1.4)演示更加完整。
开发工具与测试增强
在开发支持方面,本版本引入了新的Socket API和测试套件,为网络通信功能提供了基础。测试基础设施的增强包括新增的tt-mlir C++代码生成emitc测试框架,以及针对不同性能条件测量的新方法。
CI/CD流程也获得了多项改进,包括对大型文件缓存的支持,使得Falcon7b等大模型权重可以更高效地用于回归测试。测试覆盖率的提升体现在新增的多设备Eltwise和TM(可能是Tensor Manipulation)压力测试,以及连接开/关压力测试等新测试场景。
总结
Tenstorrent Metal v0.59.0-rc9候选版本在架构、性能、模型支持和开发工具等多个维度都实现了显著进步。从底层的缓冲区管理和设备初始化优化,到上层的模型支持和分布式训练架构,该版本为AI加速计算提供了更强大、更稳定的基础平台。特别是对Blackhole架构的持续优化和新mesh拓扑的支持,展现了项目团队对硬件多样性的充分考虑。这些改进为最终稳定版的发布奠定了坚实基础,值得开发者关注和评估。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00