OpenLLMetry项目中Milvus Instrumentation的Get方法Span属性问题分析
2025-06-06 18:35:21作者:姚月梅Lane
背景介绍
在分布式追踪系统中,Span属性是理解系统行为的关键元数据。OpenLLMetry项目中的Milvus Instrumentation组件负责为Milvus数据库操作生成追踪数据。最近发现,当使用Milvus客户端的get()方法时,生成的Span属性存在不准确的问题,错误地使用了search和query操作的语义约定,而不是专门为get方法设计的属性。
问题本质
Milvus客户端的get()方法是一个专门用于通过ID检索数据的操作,与search和query操作有着本质区别:
- 操作语义不同:get是基于ID的直接查找,而search是基于向量相似度的搜索
- 性能特征不同:get操作通常更快,因为它可以直接定位数据
- 使用场景不同:get用于精确检索已知ID的数据
当前实现错误地将get操作的Span标记为search和query属性,这会导致:
- 监控指标不准确
- 性能分析困难
- 问题诊断误导
技术实现分析
正确的实现应该为get方法定义专门的Span属性,包括:
- 集合名称:标识操作的目标集合
- ID数量:表示本次检索涉及的ID数量
- 输出字段:指定需要返回的字段数量
- 超时设置:操作的超时配置
- 分区信息:涉及的分区数量
这些属性能够准确反映get操作的特性和上下文,与search/query操作形成明确区分。
解决方案建议
要实现正确的Span属性标记,建议采用以下方法:
- 专用属性设置函数:创建专门为get方法设计的属性设置函数
- 明确属性命名:使用清晰的命名约定区分不同操作类型
- 完整上下文捕获:确保所有相关操作参数都被记录
示例实现应包含如下关键属性:
- 集合名称
- ID数量统计
- 输出字段计数
- 操作超时设置
- 分区名称计数
实施影响
修复此问题将带来以下改进:
- 监控准确性提升:能够准确区分get操作与其他操作
- 性能分析优化:可以单独分析get操作的性能特征
- 问题诊断简化:更精确地定位与get操作相关的问题
总结
在分布式追踪系统中,精确的操作语义标记至关重要。OpenLLMetry项目中Milvus Instrumentation对get方法的Span属性标记问题,反映了在实现数据库操作监控时需要特别注意操作类型的区分。通过为每种操作类型定义专门的Span属性,可以大大提高监控数据的准确性和实用性,为系统性能分析和问题诊断提供更可靠的基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111