OpenLLMetry项目中Milvus Instrumentation的Get方法Span属性问题分析
2025-06-06 12:23:59作者:姚月梅Lane
背景介绍
在分布式追踪系统中,Span属性是理解系统行为的关键元数据。OpenLLMetry项目中的Milvus Instrumentation组件负责为Milvus数据库操作生成追踪数据。最近发现,当使用Milvus客户端的get()方法时,生成的Span属性存在不准确的问题,错误地使用了search和query操作的语义约定,而不是专门为get方法设计的属性。
问题本质
Milvus客户端的get()方法是一个专门用于通过ID检索数据的操作,与search和query操作有着本质区别:
- 操作语义不同:get是基于ID的直接查找,而search是基于向量相似度的搜索
 - 性能特征不同:get操作通常更快,因为它可以直接定位数据
 - 使用场景不同:get用于精确检索已知ID的数据
 
当前实现错误地将get操作的Span标记为search和query属性,这会导致:
- 监控指标不准确
 - 性能分析困难
 - 问题诊断误导
 
技术实现分析
正确的实现应该为get方法定义专门的Span属性,包括:
- 集合名称:标识操作的目标集合
 - ID数量:表示本次检索涉及的ID数量
 - 输出字段:指定需要返回的字段数量
 - 超时设置:操作的超时配置
 - 分区信息:涉及的分区数量
 
这些属性能够准确反映get操作的特性和上下文,与search/query操作形成明确区分。
解决方案建议
要实现正确的Span属性标记,建议采用以下方法:
- 专用属性设置函数:创建专门为get方法设计的属性设置函数
 - 明确属性命名:使用清晰的命名约定区分不同操作类型
 - 完整上下文捕获:确保所有相关操作参数都被记录
 
示例实现应包含如下关键属性:
- 集合名称
 - ID数量统计
 - 输出字段计数
 - 操作超时设置
 - 分区名称计数
 
实施影响
修复此问题将带来以下改进:
- 监控准确性提升:能够准确区分get操作与其他操作
 - 性能分析优化:可以单独分析get操作的性能特征
 - 问题诊断简化:更精确地定位与get操作相关的问题
 
总结
在分布式追踪系统中,精确的操作语义标记至关重要。OpenLLMetry项目中Milvus Instrumentation对get方法的Span属性标记问题,反映了在实现数据库操作监控时需要特别注意操作类型的区分。通过为每种操作类型定义专门的Span属性,可以大大提高监控数据的准确性和实用性,为系统性能分析和问题诊断提供更可靠的基础。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446