FreeMask:利用合成图像提升语义分割模型性能
2024-09-26 02:59:02作者:史锋燃Gardner
项目介绍
FreeMask 是一个开源项目,旨在通过生成多样化的合成图像及其密集标注,显著提升语义分割模型的性能。该项目基于 PyTorch 实现,并已在 NeurIPS 2023 会议上发表相关论文。FreeMask 的核心思想是通过合成图像与真实图像的混合训练,增强模型的泛化能力和准确性。
项目技术分析
FreeMask 的技术实现主要包括以下几个关键步骤:
- 合成图像生成:利用 FreestyleNet 生成多样化的合成图像,这些图像基于语义掩码(semantic masks)生成,确保图像的多样性和真实感。
- 数据预处理:对生成的合成图像进行预处理,包括过滤噪声区域和基于掩码难度的重采样,以提高数据质量。
- 模型训练:使用预处理后的合成图像与真实图像混合训练语义分割模型,如 Mask2Former、SegFormer 和 Segmenter 等。
项目及技术应用场景
FreeMask 适用于以下场景:
- 语义分割任务:无论是城市规划、自动驾驶还是医学影像分析,语义分割都是关键技术。FreeMask 通过提升模型性能,可以显著提高这些应用的准确性和可靠性。
- 数据增强:在数据稀缺或标注成本高的情况下,FreeMask 提供了一种高效的数据增强方法,通过合成图像弥补数据不足的问题。
- 模型研究:对于研究者来说,FreeMask 提供了一个强大的工具,可以用于探索和验证新的模型架构和训练方法。
项目特点
- 高性能:实验结果表明,使用 FreeMask 生成的合成图像进行训练,可以显著提升模型在 ADE20K 和 COCO-Stuff-164K 数据集上的性能,最高可提升 3.3% 的 mIoU。
- 高质量合成数据:FreeMask 生成的合成图像具有高度的多样性和真实感,能够有效增强模型的泛化能力。
- 易于集成:项目提供了详细的安装和使用指南,可以轻松集成到现有的语义分割工作流中。
- 开源社区支持:FreeMask 是一个开源项目,社区成员可以共同参与开发和改进,推动技术的发展。
结语
FreeMask 通过创新的合成图像生成和预处理技术,为语义分割领域带来了新的突破。无论你是开发者、研究者还是数据科学家,FreeMask 都将成为你提升模型性能的得力助手。快来尝试 FreeMask,体验合成图像带来的强大力量吧!
项目地址:FreeMask GitHub
论文链接:FreeMask: Synthetic Images with Dense Annotations Make Stronger Segmentation Models
数据集下载:ADE20K-Synthetic | COCO-Synthetic
模型下载:模型下载链接
训练日志:训练日志
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210