FreeMask 使用指南
2024-09-28 02:09:28作者:郁楠烈Hubert
FreeMask 是一个基于 PyTorch 的开源项目,旨在通过合成图像与密集注释增强语义分割模型的性能。此项目由 Lihe Yang 等人在 NeurIPS 2023 上发表的论文所支持,并提供了详细的实现方法和实验结果。以下是关于该项目的目录结构、启动文件以及配置文件的介绍。
1. 目录结构及介绍
FreeMask 的项目结构精心组织以促进易用性和维护性:
FreeMask/
├── configs # 配置文件夹,存放各实验的配置文件。
├── docs # 文档资料,可能包括开发指南或额外说明。
├── preprocess # 数据预处理脚本,用于处理合成图片。
├── scripts # 可执行脚本,如训练和测试程序的入口。
├── training-logs # 训练日志存储位置。
├── LICENSE # 开源许可证文件,采用 MIT 许可证。
├── README.md # 项目的主要读我文件,概述项目目的和基本使用信息。
├── dist_train.sh # 分布式训练的启动脚本。
├── dist_test.sh # 分布式测试的启动脚本。
├── test.py # 单机测试脚本。
├── train.py # 单机训练脚本。
└── 其他必要库文件和依赖
- configs:包含用于不同模型和数据集的配置文件,允许用户根据需求调整训练细节。
- preprocess:提供脚本用于生成和处理合成图像的注释,确保数据质量。
- scripts:通常不直接包含在此列出,但假设存在以指导如何运行任务。
- training-logs:保存训练过程中的日志文件,便于分析训练状态。
- LICENSE 和 README.md:法律声明和快速入门指南。
- 各个
.sh
脚本用于分布式环境下的训练和测试,简化复杂操作的启动流程。
2. 项目的启动文件介绍
- dist_train.sh: 这是一个批处理脚本,用于在分布式环境中启动训练进程。用户需指定配置文件路径和GPU数量来运行命令,例如
bash dist_train.sh <config_path> 8
,这里<config_path>
应替换为实际的配置文件路径,8表示使用的GPU数。 - dist_test.sh: 类似于训练脚本,但它用于在分布式环境下进行模型测试,需要配置文件路径作为输入。
- test.py, train.py: 提供了单机模式下测试和训练的入口点,对于快速验证或本地调试非常有用。
3. 项目的配置文件介绍
配置文件位于 configs
文件夹内,这些 .py
文件定义了训练和评估的几乎所有参数,包括但不限于:
- 模型架构:指定了使用的语义分割模型(如 Mask2Former、SegFormer 或 Segmenter)及其变体。
- 数据集路径:包括真实图像和合成图像的数据根目录。
- 学习率策略、优化器设置:影响模型训练的速度和收敛性。
- 损失函数与评价指标:定义了训练过程中如何评估模型性能。
- 训练和测试的迭代次数以及其他训练循环相关设定。
- 数据预处理步骤:包括图像的缩放、裁剪等操作。
- 是否使用合成数据以及合成数据的相关参数。
使用配置文件时,用户可以根据自己的研究或者实验需求调整上述参数,从而定制化训练流程。记得修改 data_root
和 data_root_syn
以指向正确的真实数据和合成数据目录。
通过深入理解和调整这些配置文件,用户可以最大化FreeMask的潜力,进而训练出更强的语义分割模型。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8