首页
/ FreeMask 项目使用教程

FreeMask 项目使用教程

2024-09-25 01:39:31作者:廉皓灿Ida

1. 项目介绍

FreeMask 是一个开源项目,旨在通过生成带有密集注释的合成图像来增强语义分割模型的性能。该项目在 NeurIPS 2023 上发表,提供了官方的 PyTorch 实现。FreeMask 通过从语义掩码生成多样化的合成图像,并使用这些合成图像对来提升全监督语义分割的性能。

主要特点

  • 合成图像生成:从语义掩码生成多样化的合成图像。
  • 密集注释:合成图像带有密集的注释,有助于提升分割模型的性能。
  • 增强分割模型:通过使用合成图像对,显著提升语义分割模型的性能。

2. 项目快速启动

安装依赖

首先,确保你已经安装了以下依赖:

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"
pip install "mmsegmentation>=1.0.0"
pip install "mmdet>=3.0.0rc4"

下载数据集

下载 ADE20K 和 COCO-Stuff-164K 真实数据集,并按照说明进行预处理。

下载合成数据集

FreeMask 提供了已经处理好的合成 ADE20K 和 COCO-Stuff-164K 数据集,你可以直接下载使用:

训练模型

使用以下命令启动训练:

bash dist_train.sh <config> 8

生成和预处理合成图像(可选)

如果你需要生成额外的合成图像,可以按照以下步骤进行:

  1. 生成合成图像

    # 参考 FreestyleNet 的生成步骤
    
  2. 预处理合成图像

    python preprocess/filter.py <config> <checkpoint> --real-img-path <> --real-mask-path <> --syn-img-path <> --syn-mask-path <> --filtered-mask-path <>
    

3. 应用案例和最佳实践

应用案例

FreeMask 可以广泛应用于需要高精度语义分割的场景,如自动驾驶、医学图像分析、遥感图像处理等。通过使用合成图像对,可以显著提升分割模型的鲁棒性和准确性。

最佳实践

  • 数据增强:在训练过程中,使用合成图像对进行数据增强,可以有效提升模型的泛化能力。
  • 模型微调:在特定任务上,使用合成图像对进行模型微调,可以进一步提升模型的性能。

4. 典型生态项目

MMSegmentation

MMSegmentation 是一个基于 PyTorch 的语义分割工具箱,提供了丰富的分割模型和工具。FreeMask 与 MMSegmentation 兼容,可以直接使用 MMSegmentation 提供的模型和工具进行训练和评估。

MMDetection

MMDetection 是一个基于 PyTorch 的目标检测工具箱,提供了多种检测模型和工具。虽然 FreeMask 主要关注语义分割,但与 MMDetection 结合使用,可以进一步提升多任务学习的性能。

FreestyleNet

FreestyleNet 是一个用于从语义掩码生成合成图像的项目。FreeMask 在生成合成图像时严格遵循 FreestyleNet 的方法,因此可以与 FreestyleNet 结合使用,进一步提升合成图像的质量。

通过以上模块的介绍和实践,你可以快速上手 FreeMask 项目,并将其应用于实际的语义分割任务中。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8