FreeMask 项目使用教程
1. 项目介绍
FreeMask 是一个开源项目,旨在通过生成带有密集注释的合成图像来增强语义分割模型的性能。该项目在 NeurIPS 2023 上发表,提供了官方的 PyTorch 实现。FreeMask 通过从语义掩码生成多样化的合成图像,并使用这些合成图像对来提升全监督语义分割的性能。
主要特点
- 合成图像生成:从语义掩码生成多样化的合成图像。
- 密集注释:合成图像带有密集的注释,有助于提升分割模型的性能。
- 增强分割模型:通过使用合成图像对,显著提升语义分割模型的性能。
2. 项目快速启动
安装依赖
首先,确保你已经安装了以下依赖:
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"
pip install "mmsegmentation>=1.0.0"
pip install "mmdet>=3.0.0rc4"
下载数据集
下载 ADE20K 和 COCO-Stuff-164K 真实数据集,并按照说明进行预处理。
下载合成数据集
FreeMask 提供了已经处理好的合成 ADE20K 和 COCO-Stuff-164K 数据集,你可以直接下载使用:
训练模型
使用以下命令启动训练:
bash dist_train.sh <config> 8
生成和预处理合成图像(可选)
如果你需要生成额外的合成图像,可以按照以下步骤进行:
-
生成合成图像:
# 参考 FreestyleNet 的生成步骤 -
预处理合成图像:
python preprocess/filter.py <config> <checkpoint> --real-img-path <> --real-mask-path <> --syn-img-path <> --syn-mask-path <> --filtered-mask-path <>
3. 应用案例和最佳实践
应用案例
FreeMask 可以广泛应用于需要高精度语义分割的场景,如自动驾驶、医学图像分析、遥感图像处理等。通过使用合成图像对,可以显著提升分割模型的鲁棒性和准确性。
最佳实践
- 数据增强:在训练过程中,使用合成图像对进行数据增强,可以有效提升模型的泛化能力。
- 模型微调:在特定任务上,使用合成图像对进行模型微调,可以进一步提升模型的性能。
4. 典型生态项目
MMSegmentation
MMSegmentation 是一个基于 PyTorch 的语义分割工具箱,提供了丰富的分割模型和工具。FreeMask 与 MMSegmentation 兼容,可以直接使用 MMSegmentation 提供的模型和工具进行训练和评估。
MMDetection
MMDetection 是一个基于 PyTorch 的目标检测工具箱,提供了多种检测模型和工具。虽然 FreeMask 主要关注语义分割,但与 MMDetection 结合使用,可以进一步提升多任务学习的性能。
FreestyleNet
FreestyleNet 是一个用于从语义掩码生成合成图像的项目。FreeMask 在生成合成图像时严格遵循 FreestyleNet 的方法,因此可以与 FreestyleNet 结合使用,进一步提升合成图像的质量。
通过以上模块的介绍和实践,你可以快速上手 FreeMask 项目,并将其应用于实际的语义分割任务中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00