Semantic Segmentation Editor 安装与使用指南
1. 项目介绍
Semantic Segmentation Editor 是一个基于 Web 的标注工具,专门用于创建机器学习训练数据集(2D 和 3D)。该工具由日立汽车工业实验室(Hitachi Automotive And Industry Lab)开发,主要用于自动驾驶研究,但也适用于其他类型的语义目标数据库标注。它支持普通相机拍摄的 2D 图像(jpg 和 png 文件)以及 LiDAR 生成的 3D 点云(pcd 文件)中目标的标注。
2. 项目快速启动
2.1 使用 Docker 启动
-
下载 Docker Compose 堆栈文件:
wget https://raw.githubusercontent.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor/master/sse-docker-stack.yml
-
下载配置文件:
wget https://raw.githubusercontent.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor/master/settings.json
-
设置环境变量并启动 Docker Compose:
METEOR_SETTINGS=$(cat settings.json) SSE_IMAGES=YOUR_IMAGES_PATH docker-compose -f sse-docker-stack.yml up
2.2 从源码启动
-
安装 Meteor(适用于 OSX 或 Linux):
curl https://install.meteor.com/ | sh
-
克隆项目并进入项目目录:
git clone https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor.git cd semantic-segmentation-editor
-
安装依赖并启动应用:
meteor npm install meteor npm start
-
访问应用: 默认情况下,应用运行在
http://localhost:3000
。
3. 应用案例和最佳实践
3.1 自动驾驶数据标注
Semantic Segmentation Editor 最初是为自动驾驶研究开发的,特别适用于标注道路、车辆、行人等目标。通过该工具,研究人员可以快速创建高质量的训练数据集,用于训练语义分割模型。
3.2 其他领域应用
除了自动驾驶,该工具还可用于其他需要语义分割标注的领域,如医学影像分析、遥感图像处理等。用户可以根据具体需求自定义标注类别和颜色。
4. 典型生态项目
4.1 Meteor
Semantic Segmentation Editor 是基于 Meteor 框架开发的。Meteor 是一个全栈 JavaScript 框架,适用于快速构建实时 Web 应用。
4.2 React
前端界面使用 React 构建,提供了良好的用户体验和交互性能。
4.3 Three.js
用于处理 3D 点云的渲染和交互,提供了强大的 3D 图形处理能力。
4.4 Paper.js
用于处理 2D 图像的标注,提供了丰富的图形绘制和编辑功能。
通过这些生态项目的支持,Semantic Segmentation Editor 能够提供高效、灵活的标注功能,满足不同应用场景的需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









