AutoML for Image Semantic Segmentation:打造未来图像分割的利器
在计算机视觉领域,深度学习模型已经在图像语义分割任务中取得了显著的进步。然而,如何自动设计出性能更优、效率更高的网络架构仍然是一个挑战。为此,我们向你推荐一款开源项目——AutoML for Image Semantic Segmentation,它实现了业界领先的Auto-Deeplab算法,并且在性能上超越了原论文的实现。
项目介绍
AutoML for Image Semantic Segmentation 是一个基于PyTorch的开源实现,旨在自动化搜索最佳的深度学习网络结构用于图像语义分割。这个项目中的核心是Auto-Deeplab,一种两层次的搜索空间设计,可以同时优化网络级和单元级的架构,以达到性能与模型大小之间的平衡。

通过这种创新的设计,Auto-Deeplab不仅在准确度上有所提升,还减少了最终模型的大小,使得在资源有限的情况下也能获得卓越的表现。
项目技术分析
Auto-Deeplab构建了一个现代卷积神经网络常见的双层层次结构。它首先进行大规模的搜索,形成一个“大而松”的模型,该模型包含了多种可能的网络结构。随后,通过解码过程,从这个模型中提取出最优的网络架构。最后,基于找到的最优架构,重新训练得到最终的高效模型。
应用场景
这个项目广泛适用于需要图像语义分割的各个领域,如自动驾驶、遥感图像分析、医学图像识别等。你可以利用这个工具来自动化地优化你的模型,无需手动调整复杂的网络参数,从而节省时间和精力。
项目特点
- 超越原论文的性能:在相同条件下,我们的搜索实现能获得比原论文更好的结果。
- 两层次搜索空间:网络级和细胞级的联合优化确保了模型的性能和效率。
- 易于使用:提供清晰的训练流程,包括架构搜索、解码和重训三个阶段。
- 灵活支持:支持不同的GPU配置,适配各种规模的实验环境。
- 预训练模型:提供了搜索后的模型以及重训后的模型供用户直接使用。
开始尝试
要开始使用AutoML for Image Semantic Segmentation,你只需要按照README中的步骤进行训练、解码和重训操作,即可体验到自动化的模型优化带来的便利。
现在就加入这个项目,感受Auto-Deeplab的强大,让自动机器学习为你的图像处理任务插上翅膀吧!
资源链接
- 项目GitHub仓库
- 预训练模型(百度网盘) (密码:xm9z)
- 预训练模型(Google Drive)
想要了解更多关于AutoML for Image Semantic Segmentation的信息,请查阅项目文档并参与到社区讨论中来,一起推动计算机视觉技术的发展!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00