Harvester项目中大内存VM与多GPU配置的OOM问题分析与解决
2025-06-14 14:32:24作者:郁楠烈Hubert
在Harvester虚拟化平台上,当用户尝试配置大内存虚拟机并搭配多块NVIDIA GPU时,可能会遇到虚拟机无法正常启动的问题。本文将深入分析这一现象的原因,并提供有效的解决方案。
问题现象
用户在使用配备1TB内存和4块NVIDIA H100 GPU的服务器时发现:
- 配置2块GPU和64GB内存的虚拟机运行正常
- 当内存增加到128GB时,虚拟机进入启动循环(启动-运行-停止)
- 类似问题也出现在配备2块NVIDIA L40s GPU和320GB内存的配置中
根本原因分析
通过分析内核日志发现,这类问题主要是由于内存控制组(cgroup)的OOM(Out of Memory)事件导致的。当虚拟机配置较大内存和多块GPU时,QEMU进程及其相关组件会消耗大量内存,特别是在以下情况下更为明显:
- GPU驱动开销:NVIDIA GPU直通时,驱动会占用额外的内存空间
- CPU核心数影响:低核心数配置(如16核)比高核心数配置(如48核)更容易触发OOM
- 内存预留不足:默认配置未为系统开销预留足够内存
解决方案
Harvester提供了ReservedMemory参数来解决这类问题。正确的配置方法如下:
-
计算预留内存:通常建议预留虚拟机总内存的10%作为系统开销
- 例如448GB内存的虚拟机,应设置约40GB的预留内存
- 256GB内存的虚拟机,应设置约25GB的预留内存
-
配置方法:在虚拟机YAML配置中添加或修改以下部分:
resources:
limits:
cpu: "48"
memory: 448Gi
requests:
cpu: "3"
memory: 448Gi
ReservedMemory: 40Gi
最佳实践建议
- 渐进式测试:在配置大内存虚拟机时,建议从小内存开始测试,逐步增加
- 监控系统日志:密切关注内核日志中的OOM事件提示
- 平衡配置:在CPU核心数较少的情况下,考虑适当增加预留内存比例
- 版本兼容性:确保使用Harvester 1.4.0或更高版本,以获得最佳的大内存支持
通过合理配置ReservedMemory参数,用户可以成功在Harvester平台上运行大内存、多GPU的高性能虚拟机,满足AI训练、大数据处理等高性能计算场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143