Harvester项目中大内存VM与多GPU配置的OOM问题分析与解决
2025-06-14 01:39:26作者:郁楠烈Hubert
在Harvester虚拟化平台上,当用户尝试配置大内存虚拟机并搭配多块NVIDIA GPU时,可能会遇到虚拟机无法正常启动的问题。本文将深入分析这一现象的原因,并提供有效的解决方案。
问题现象
用户在使用配备1TB内存和4块NVIDIA H100 GPU的服务器时发现:
- 配置2块GPU和64GB内存的虚拟机运行正常
- 当内存增加到128GB时,虚拟机进入启动循环(启动-运行-停止)
- 类似问题也出现在配备2块NVIDIA L40s GPU和320GB内存的配置中
根本原因分析
通过分析内核日志发现,这类问题主要是由于内存控制组(cgroup)的OOM(Out of Memory)事件导致的。当虚拟机配置较大内存和多块GPU时,QEMU进程及其相关组件会消耗大量内存,特别是在以下情况下更为明显:
- GPU驱动开销:NVIDIA GPU直通时,驱动会占用额外的内存空间
- CPU核心数影响:低核心数配置(如16核)比高核心数配置(如48核)更容易触发OOM
- 内存预留不足:默认配置未为系统开销预留足够内存
解决方案
Harvester提供了ReservedMemory
参数来解决这类问题。正确的配置方法如下:
-
计算预留内存:通常建议预留虚拟机总内存的10%作为系统开销
- 例如448GB内存的虚拟机,应设置约40GB的预留内存
- 256GB内存的虚拟机,应设置约25GB的预留内存
-
配置方法:在虚拟机YAML配置中添加或修改以下部分:
resources:
limits:
cpu: "48"
memory: 448Gi
requests:
cpu: "3"
memory: 448Gi
ReservedMemory: 40Gi
最佳实践建议
- 渐进式测试:在配置大内存虚拟机时,建议从小内存开始测试,逐步增加
- 监控系统日志:密切关注内核日志中的OOM事件提示
- 平衡配置:在CPU核心数较少的情况下,考虑适当增加预留内存比例
- 版本兼容性:确保使用Harvester 1.4.0或更高版本,以获得最佳的大内存支持
通过合理配置ReservedMemory
参数,用户可以成功在Harvester平台上运行大内存、多GPU的高性能虚拟机,满足AI训练、大数据处理等高性能计算场景的需求。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K