LyCORIS项目中多算法配置与rank_dropout参数的影响分析
问题背景
在使用LyCORIS项目进行模型训练时,用户发现当在配置文件中同时使用LoHa和LoKr算法时,训练过程中生成的样本图像表现正常,但在单独加载权重文件进行测试时却出现了明显的图像生成错误。这一问题在使用kohya_ss的sdxl_gen_img.py、auto1111和comfyUI等不同工具测试时均能复现。
关键发现
经过多次测试验证,确定了以下关键点:
-
多算法支持性:LyCORIS项目确实支持在配置文件中同时使用多种算法(如LoHa和LoKr),auto1111等工具能够正确处理这种多算法配置。
-
rank_dropout参数问题:当rank_dropout参数值大于0时,即使开启了rank_dropout_scale选项,也会导致测试时生成错误的图像结果。这一问题与是否使用dora_wd或多算法配置无关。
-
dora_wd与rank_dropout的冲突:特别值得注意的是,当同时启用dora_wd和rank_dropout时,会导致严重的问题,建议避免这种参数组合。
技术建议
基于以上发现,对于使用LyCORIS项目进行模型训练的用户,我们建议:
-
参数选择:在大多数情况下,可以安全地禁用rank_dropout参数,因为它的必要性相对较低,而且可能带来不稳定的结果。
-
训练中断问题:目前已知存在网络权重无法继续训练的问题,开发团队已经意识到这一问题并正在修复中。
-
参数组合测试:在使用新参数组合前,建议先进行小规模测试,验证生成的权重文件是否能正确工作,避免长时间训练后发现不可用的问题。
总结
LyCORIS项目提供了灵活的算法配置选项,但在使用某些高级参数时需要特别注意其兼容性和潜在影响。rank_dropout参数虽然在某些情况下可能有用,但在当前版本中与dora_wd和多算法配置存在兼容性问题,建议用户谨慎使用或暂时避免。开发团队正在积极解决已知问题,未来版本有望提供更稳定的参数组合支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00