LyCORIS项目中多算法配置与rank_dropout参数的影响分析
问题背景
在使用LyCORIS项目进行模型训练时,用户发现当在配置文件中同时使用LoHa和LoKr算法时,训练过程中生成的样本图像表现正常,但在单独加载权重文件进行测试时却出现了明显的图像生成错误。这一问题在使用kohya_ss的sdxl_gen_img.py、auto1111和comfyUI等不同工具测试时均能复现。
关键发现
经过多次测试验证,确定了以下关键点:
-
多算法支持性:LyCORIS项目确实支持在配置文件中同时使用多种算法(如LoHa和LoKr),auto1111等工具能够正确处理这种多算法配置。
-
rank_dropout参数问题:当rank_dropout参数值大于0时,即使开启了rank_dropout_scale选项,也会导致测试时生成错误的图像结果。这一问题与是否使用dora_wd或多算法配置无关。
-
dora_wd与rank_dropout的冲突:特别值得注意的是,当同时启用dora_wd和rank_dropout时,会导致严重的问题,建议避免这种参数组合。
技术建议
基于以上发现,对于使用LyCORIS项目进行模型训练的用户,我们建议:
-
参数选择:在大多数情况下,可以安全地禁用rank_dropout参数,因为它的必要性相对较低,而且可能带来不稳定的结果。
-
训练中断问题:目前已知存在网络权重无法继续训练的问题,开发团队已经意识到这一问题并正在修复中。
-
参数组合测试:在使用新参数组合前,建议先进行小规模测试,验证生成的权重文件是否能正确工作,避免长时间训练后发现不可用的问题。
总结
LyCORIS项目提供了灵活的算法配置选项,但在使用某些高级参数时需要特别注意其兼容性和潜在影响。rank_dropout参数虽然在某些情况下可能有用,但在当前版本中与dora_wd和多算法配置存在兼容性问题,建议用户谨慎使用或暂时避免。开发团队正在积极解决已知问题,未来版本有望提供更稳定的参数组合支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00