LyCORIS项目中多算法配置与rank_dropout参数的影响分析
问题背景
在使用LyCORIS项目进行模型训练时,用户发现当在配置文件中同时使用LoHa和LoKr算法时,训练过程中生成的样本图像表现正常,但在单独加载权重文件进行测试时却出现了明显的图像生成错误。这一问题在使用kohya_ss的sdxl_gen_img.py、auto1111和comfyUI等不同工具测试时均能复现。
关键发现
经过多次测试验证,确定了以下关键点:
-
多算法支持性:LyCORIS项目确实支持在配置文件中同时使用多种算法(如LoHa和LoKr),auto1111等工具能够正确处理这种多算法配置。
-
rank_dropout参数问题:当rank_dropout参数值大于0时,即使开启了rank_dropout_scale选项,也会导致测试时生成错误的图像结果。这一问题与是否使用dora_wd或多算法配置无关。
-
dora_wd与rank_dropout的冲突:特别值得注意的是,当同时启用dora_wd和rank_dropout时,会导致严重的问题,建议避免这种参数组合。
技术建议
基于以上发现,对于使用LyCORIS项目进行模型训练的用户,我们建议:
-
参数选择:在大多数情况下,可以安全地禁用rank_dropout参数,因为它的必要性相对较低,而且可能带来不稳定的结果。
-
训练中断问题:目前已知存在网络权重无法继续训练的问题,开发团队已经意识到这一问题并正在修复中。
-
参数组合测试:在使用新参数组合前,建议先进行小规模测试,验证生成的权重文件是否能正确工作,避免长时间训练后发现不可用的问题。
总结
LyCORIS项目提供了灵活的算法配置选项,但在使用某些高级参数时需要特别注意其兼容性和潜在影响。rank_dropout参数虽然在某些情况下可能有用,但在当前版本中与dora_wd和多算法配置存在兼容性问题,建议用户谨慎使用或暂时避免。开发团队正在积极解决已知问题,未来版本有望提供更稳定的参数组合支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00