LyCORIS项目中LOHA/LOKR与DORA兼容性问题分析
2025-07-02 06:40:40作者:柯茵沙
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
问题概述
在LyCORIS深度学习框架的最新开发分支中,用户发现当启用DORA权重分解(dora_wd=True)时,LOHA(Low-rank Hadamard Product)和LOKR(Low-rank Kronecker Product)这两种低秩适配方法在训练阶段能够正常进行,但在推理阶段却生成了带有明显色彩噪声的输出结果。这一问题影响了模型的实际应用效果。
技术背景
LOHA和LOKR是LyCORIS框架中两种重要的参数高效微调方法,它们通过不同的低秩分解策略来减少模型参数数量。DORA(Decomposed Orthogonal Random Adaptation)则是一种权重分解技术,旨在提高模型的泛化能力。在理想情况下,这些技术应该能够协同工作,共同提升模型性能。
问题根源
经过技术团队分析,发现问题的根源在于权重分解对输出层的处理方式。当启用DORA时,默认配置(wd_on_output=True)会导致输出层的权重也被分解,这对于LOHA和LOKR方法产生了不良影响。特别是:
- 输出层的分解干扰了低秩适配器的正常运作
- 破坏了特征表示的连贯性
- 导致推理阶段生成异常的色彩噪声
解决方案
目前确认的有效解决方案是在使用LOHA或LOKR方法时,将wd_on_output参数设置为False。这一设置可以:
- 保留DORA对隐藏层的权重分解优势
- 避免对输出层的干扰
- 维持低秩适配器的正常功能
技术建议
对于LyCORIS框架的用户,建议在使用LOHA/LOKR+DORA组合时注意以下实践:
- 明确设置wd_on_output=False参数
- 在训练前后验证输出质量
- 监控中间层的特征分布
- 考虑不同分解策略的组合效果
未来展望
这一问题的发现为框架的进一步优化提供了方向。技术团队可能会在未来版本中:
- 自动检测和调整不兼容的参数组合
- 开发更鲁棒的权重分解策略
- 提供更详细的兼容性文档
- 优化低秩方法与分解技术的交互方式
通过持续改进,LyCORIS框架将能够更好地支持各种参数高效微调技术的组合使用,为深度学习研究和应用提供更强大的工具支持。
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
238
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
96
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
85
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
110
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26