首页
/ FATE-LLM项目中PELLM模块的参数聚合机制解析

FATE-LLM项目中PELLM模块的参数聚合机制解析

2025-06-05 11:10:19作者:戚魁泉Nursing

在FATE-LLM项目的PELLM(Parameter-Efficient Large Language Model)模块中,实现了一种高效的联邦学习参数聚合机制,特别针对添加了适配器(如LoRA等)的PEFT(Parameter-Efficient Fine-Tuning)模型。本文将深入分析这一机制的技术实现原理。

核心机制概述

当使用PELLM模块时,系统会自动识别并仅聚合模型中的可训练参数(即requires_grad=True的参数)。对于添加了适配器的PEFT模型,这意味着:

  1. 基础模型(base model)的参数通常被冻结(requires_grad=False)
  2. 只有适配器部分(如LoRA层)的参数保持可训练状态
  3. 在联邦聚合阶段,系统自动过滤掉不可训练的参数

技术实现细节

这一功能主要通过FATE的聚合器基类实现。聚合器会检查每个参数的requires_grad属性,仅收集那些标记为True的参数进行聚合。这种设计带来了几个显著优势:

  1. 通信效率:大幅减少了需要传输的参数数量,特别是对于大型语言模型
  2. 隐私保护:基础模型参数不会在参与方之间共享
  3. 灵活性:支持各种PEFT方法,只要它们通过requires_grad标记可训练参数

实际应用场景

这种机制特别适合以下场景:

  • 跨机构联合微调大型语言模型
  • 资源受限环境下(如边缘设备)的模型个性化
  • 需要保护基础模型知识产权的商业合作

扩展思考

从技术角度看,这种实现方式体现了联邦学习领域的一个重要设计原则:最小必要信息交换。它不仅提升了效率,也增强了安全性,是联邦学习与参数高效微调技术结合的典范。

未来,随着更多PEFT方法的出现,这种基于requires_grad的自动参数选择机制将展现出更强的适应性和扩展性。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
193
2.16 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
972
573
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
548
77
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
206
284
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17