ESM-3模型训练中的sequence_id生成机制解析
2025-07-06 12:39:02作者:庞眉杨Will
背景介绍
在蛋白质语言模型ESM-3的训练过程中,sequence_id是一个用于优化训练效率的重要参数。这个参数最初来源于内部模型实现中的"bin-packing"技术,目的是提高BERT类模型训练时的计算效率。
sequence_id的作用原理
sequence_id的主要功能是标识序列批次中的不同蛋白质序列。在训练过程中,模型需要处理不同长度的蛋白质序列,为了充分利用计算资源,通常会将这些序列打包成批次进行处理。sequence_id帮助模型区分批次中的不同原始序列,特别是在以下场景中:
- 当使用可变长度序列训练时
- 当需要实现序列间的注意力掩码时
- 当进行序列填充(padding)处理时
实际应用建议
根据ESM-3开发者的建议,对于大多数用户场景,最简单的处理方式是:
- 将不同长度的序列沿着批次维度进行拼接
- 使用适当的填充(padding)处理使它们长度一致
- 直接将
sequence_id设置为与填充掩码(padding mask)相同的值
这种处理方式既简单又有效,能够满足大多数训练需求。对于示例中提到的批次大小为2、序列长度分别为3和6的情况,可以这样处理:
- 将较短序列(长度3)填充到长度6
- 创建一个2x6的张量,其中:
- 第一行代表第一个序列:前3个位置为1(真实序列),后3个位置为0(填充)
- 第二行代表第二个序列:6个位置全为1(完整序列)
技术细节考量
虽然sequence_id最初是为bin-packing优化设计的,但在开源实现中,开发者明确指出这一功能可能没有经过完整测试。因此,建议用户优先采用上述简化方案,除非有特殊需求需要实现更复杂的序列打包策略。
对于希望进一步优化训练效率的高级用户,可以考虑:
- 实现动态批处理(dynamic batching),将长度相近的序列打包在一起
- 使用更复杂的填充策略减少计算浪费
- 在自定义训练循环中实现序列长度的智能分组
总结
在ESM-3模型的训练中,sequence_id参数虽然有其特定用途,但对于大多数应用场景,将其简化为填充掩码是一个可靠且易于实现的方案。这种处理方式既保持了模型的训练效率,又大大降低了实现的复杂度,特别适合初次接触蛋白质语言模型训练的研究人员和开发者。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
615
138
Ascend Extension for PyTorch
Python
165
184
React Native鸿蒙化仓库
JavaScript
240
314
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.16 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
257
91
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
646
255