ESM3模型获取蛋白质序列嵌入的方法解析
2025-07-06 04:36:24作者:宣利权Counsellor
概述
ESM3作为蛋白质语言模型的最新版本,在蛋白质序列表示学习方面展现了强大的能力。与之前的ESM2模型不同,ESM3提供了更灵活的接口来获取蛋白质序列的嵌入表示。本文将详细介绍如何使用ESM3模型提取蛋白质序列的嵌入特征。
ESM3模型架构特点
ESM3采用了Transformer架构,能够处理蛋白质序列中的长距离依赖关系。模型通过自注意力机制学习氨基酸残基之间的相互作用,生成富含结构信息的序列表示。相比ESM2,ESM3在模型容量和训练数据方面都有显著提升。
获取序列嵌入的步骤
1. 模型加载
首先需要加载预训练的ESM3模型。ESM3提供了不同规模的预训练模型,用户可以根据计算资源选择合适的版本:
from esm import ESM3
import torch
model = ESM3.from_pretrained("esm3_sm_open_v1", device=torch.device("cuda"))
2. 蛋白质序列准备
ESM3使用专门的ESMProtein类来表示蛋白质序列:
protein = ESMProtein(
sequence = "FIFLALLGAAVAFPVDDDDKIVGGYTCGANTVPYQVSLNSGYHFCGGSLINSQWVVSAAHCYKSGIQVRLGEDNINVVEG"
)
3. 序列编码
将蛋白质序列转换为模型可处理的张量格式:
protein_tensor = model.encode(protein)
4. 获取嵌入表示
通过模型的forward_and_sample方法获取序列嵌入,需要设置return_per_residue_embeddings参数为True:
from esm import SamplingConfig
output = model.forward_and_sample(
protein_tensor,
SamplingConfig(return_per_residue_embeddings=True)
)
嵌入表示的应用
获得的序列嵌入可以用于多种下游任务:
- 蛋白质功能预测:将嵌入作为特征输入分类器
- 结构预测:作为辅助信息指导蛋白质折叠
- 序列比对:计算不同蛋白质序列的相似性
- 突变效应预测:分析氨基酸替换对蛋白质功能的影响
性能优化建议
- 对于大批量序列处理,建议使用批处理方式提高效率
- 根据任务需求选择合适的模型规模(sm/med/lg)
- 考虑使用混合精度训练减少显存占用
- 对于长序列,可以分段处理后再合并结果
总结
ESM3提供了简洁的API来获取蛋白质序列的高质量嵌入表示。这些嵌入捕获了丰富的结构和功能信息,为各种生物信息学任务提供了强大的特征基础。通过合理配置模型参数和优化计算流程,研究人员可以高效地利用这些表示进行深入的蛋白质研究。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
441
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
395
Ascend Extension for PyTorch
Python
249
285
React Native鸿蒙化仓库
JavaScript
276
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
50
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
678
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
111