XTuner微调过程中评估样例循环问题的分析与解决
问题背景
在使用XTuner对InternLM2-chat-1.8B模型进行微调时,开发人员发现了一个值得关注的现象:在训练过程中的阶段性评估环节,模型生成的回答容易出现循环重复的问题。这种现象在菜谱生成等结构化文本输出任务中尤为明显。
现象描述
在微调过程中,开发人员设置了每500次迭代进行一次评估,评估输入包括"酸菜鱼怎么做"、"过桥米线怎么做"等菜谱生成请求。观察发现:
- 前500次迭代评估时,模型能生成相对正常的回答
- 501-1000次迭代后,评估输出开始出现明显的循环重复现象
- 到6000次迭代左右,循环问题变得更加严重
有趣的是,当使用xtuner chat命令手动测试时,如果设置了重复惩罚(repetition penalty)参数,模型仍然能够生成正常的回答。这表明循环问题可能与评估时的生成参数设置有关。
问题分析
经过深入分析,发现循环重复问题主要由以下因素导致:
-
评估时缺乏重复惩罚机制:XTuner默认的EvaluateChatHook在评估时没有设置重复惩罚参数(repetition_penalty),该参数默认为1,意味着对重复内容没有任何惩罚。
-
结构化文本的固有特性:菜谱等结构化文本本身具有较高的重复性,如步骤编号、常用烹饪动词等,这使得模型更容易陷入重复循环。
-
微调数据的影响:如果微调数据中存在某些模式或重复结构,模型可能会过度学习这些模式,导致生成时倾向于重复。
解决方案
XTuner团队已经通过PR#501提供了解决方案,允许在评估时自定义生成参数。具体实现方式如下:
-
修改评估配置:在config文件中,可以为EvaluateChatHook添加generation_kwargs参数,设置包括max_new_tokens、repetition_penalty等在内的各种生成参数。
-
示例配置修改:
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
generation_kwargs={'repetition_penalty': 1.5, 'max_new_tokens': 512},
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
]
- 高级定制:对于需要更复杂评估的场景,可以扩展EvaluateChatHook以支持:
- 多个不同的生成配置同时评估
- 动态调整生成参数
- 对不同类型的问题应用不同的生成策略
最佳实践建议
-
合理设置重复惩罚:对于菜谱生成等任务,建议repetition_penalty设置在1.2-1.5之间,可根据实际效果调整。
-
多样化评估:可以设置多组generation_kwargs,从不同角度评估模型性能。
-
监控训练过程:除了自动评估外,建议定期手动检查模型输出,全面了解模型表现。
-
数据质量检查:确保微调数据中没有过多的重复模式,这有助于从根本上减少模型学习到重复倾向。
技术原理深入
重复惩罚机制的工作原理是通过降低已经生成token的采样概率来避免重复。具体来说:
- 在生成每个新token时,系统会检查已生成文本中的token频率
- 对于出现过的token,会根据重复惩罚系数降低其采样概率
- 惩罚系数大于1时会抑制重复,小于1时则会鼓励重复
这种机制能有效打破模型在生成结构化文本时容易陷入的重复循环,同时保持生成的连贯性。
总结
XTuner微调过程中的评估循环问题主要源于评估时缺乏适当的生成参数控制。通过合理配置generation_kwargs,特别是设置适当的重复惩罚参数,可以有效解决这一问题。这为开发者在模型微调过程中获得更准确的评估结果提供了可靠的方法。
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0254Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选









