NVIDIA Omniverse Orbit项目中相机与机器人观测数据的处理方案
2025-06-24 06:19:28作者:温玫谨Lighthearted
在机器人强化学习项目中,如何正确处理相机观测数据与机器人本体感知数据的融合是一个关键问题。本文将深入探讨NVIDIA Omniverse Orbit项目中两种不同的工作流(Manager-based和Direct)在处理多模态观测数据时的差异与最佳实践。
多模态观测数据的特点
在机器人抓取任务中,我们通常需要处理两种主要类型的观测数据:
- 本体感知数据:包括关节位置、速度、末端执行器姿态等
- 视觉数据:包括RGB图像和深度图像
这些数据在维度、数值范围和语义含义上都有显著差异,需要特殊的网络架构来处理。
Manager-based工作流的局限性
Manager-based工作流虽然提供了模块化的环境配置方式,但在处理复合观测空间时存在明显限制:
- 观测空间类型受限:仅支持Box类型的观测空间,无法直接支持Dict或Tuple等复合空间类型
- 数据融合困难:虽然可以通过自定义ObservationCfg类组织观测数据,但底层仍会将所有观测数据拼接为一个扁平向量
- 网络训练问题:实际训练中可能只优化了部分观测数据(如本体感知数据),而忽略了视觉数据
Direct工作流的优势
Direct工作流为解决这些问题提供了更好的支持:
- 灵活的空间定义:支持Gymnasium标准的Dict空间,可以明确定义不同模态的观测数据
- 网络架构适配:可以直接在YAML配置中为不同观测数据指定不同的特征提取器
- 训练效率提升:实际测试表明,Direct工作流通常能获得更快的训练收敛速度
实际配置示例
以下是一个典型的Direct工作流观测配置示例:
@configclass
class ObservationsCfg:
@configclass
class PolicyCfg(ObsGroup):
joint_pos = ObsTerm(func=mdp.joint_pos_rel)
joint_vel = ObsTerm(func=mdp.joint_vel_rel)
camera_rgb = ObsTerm(func=rgb_camera_data)
camera_depth = ObsTerm(func=depth_camera_data)
def __post_init__(self):
self.enable_corruption = False
self.concatenate_terms = False
对应的网络YAML配置应使用Dict空间处理方式:
models:
policy:
network:
- name: visual_encoder
input: permute(OBSERVATIONS["camera_rgb"], (0, 3, 1, 2))
layers:
- conv2d: {out_channels: 32, kernel_size: 8, stride: 4}
- relu
- conv2d: {out_channels: 64, kernel_size: 4, stride: 2}
- relu
- flatten
- linear: 256
- name: proprio_encoder
input: concatenate([OBSERVATIONS["joint_pos"], OBSERVATIONS["joint_vel"]])
layers: [64, 64]
- name: fusion_net
input: concatenate([visual_encoder, proprio_encoder])
layers: [128, 128]
实施建议
- 优先选择Direct工作流:特别是当项目中需要处理视觉等非结构化数据时
- 验证网络实际输入:通过检查模型state_dict确保所有观测数据都被正确处理
- 注意数据预处理:特别是图像数据需要进行适当的归一化和通道顺序调整
- 平衡数据比例:不同模态的数据在拼接前应考虑进行适当的缩放,避免某一模态主导梯度更新
通过合理选择工作流和配置方式,可以充分发挥Omniverse Orbit在机器人视觉伺服任务中的强大能力,实现高效的多模态强化学习训练。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137