NVIDIA Omniverse Orbit项目中相机与机器人观测数据的处理方案
2025-06-24 14:00:34作者:温玫谨Lighthearted
在机器人强化学习项目中,如何正确处理相机观测数据与机器人本体感知数据的融合是一个关键问题。本文将深入探讨NVIDIA Omniverse Orbit项目中两种不同的工作流(Manager-based和Direct)在处理多模态观测数据时的差异与最佳实践。
多模态观测数据的特点
在机器人抓取任务中,我们通常需要处理两种主要类型的观测数据:
- 本体感知数据:包括关节位置、速度、末端执行器姿态等
- 视觉数据:包括RGB图像和深度图像
这些数据在维度、数值范围和语义含义上都有显著差异,需要特殊的网络架构来处理。
Manager-based工作流的局限性
Manager-based工作流虽然提供了模块化的环境配置方式,但在处理复合观测空间时存在明显限制:
- 观测空间类型受限:仅支持Box类型的观测空间,无法直接支持Dict或Tuple等复合空间类型
- 数据融合困难:虽然可以通过自定义ObservationCfg类组织观测数据,但底层仍会将所有观测数据拼接为一个扁平向量
- 网络训练问题:实际训练中可能只优化了部分观测数据(如本体感知数据),而忽略了视觉数据
Direct工作流的优势
Direct工作流为解决这些问题提供了更好的支持:
- 灵活的空间定义:支持Gymnasium标准的Dict空间,可以明确定义不同模态的观测数据
- 网络架构适配:可以直接在YAML配置中为不同观测数据指定不同的特征提取器
- 训练效率提升:实际测试表明,Direct工作流通常能获得更快的训练收敛速度
实际配置示例
以下是一个典型的Direct工作流观测配置示例:
@configclass
class ObservationsCfg:
@configclass
class PolicyCfg(ObsGroup):
joint_pos = ObsTerm(func=mdp.joint_pos_rel)
joint_vel = ObsTerm(func=mdp.joint_vel_rel)
camera_rgb = ObsTerm(func=rgb_camera_data)
camera_depth = ObsTerm(func=depth_camera_data)
def __post_init__(self):
self.enable_corruption = False
self.concatenate_terms = False
对应的网络YAML配置应使用Dict空间处理方式:
models:
policy:
network:
- name: visual_encoder
input: permute(OBSERVATIONS["camera_rgb"], (0, 3, 1, 2))
layers:
- conv2d: {out_channels: 32, kernel_size: 8, stride: 4}
- relu
- conv2d: {out_channels: 64, kernel_size: 4, stride: 2}
- relu
- flatten
- linear: 256
- name: proprio_encoder
input: concatenate([OBSERVATIONS["joint_pos"], OBSERVATIONS["joint_vel"]])
layers: [64, 64]
- name: fusion_net
input: concatenate([visual_encoder, proprio_encoder])
layers: [128, 128]
实施建议
- 优先选择Direct工作流:特别是当项目中需要处理视觉等非结构化数据时
- 验证网络实际输入:通过检查模型state_dict确保所有观测数据都被正确处理
- 注意数据预处理:特别是图像数据需要进行适当的归一化和通道顺序调整
- 平衡数据比例:不同模态的数据在拼接前应考虑进行适当的缩放,避免某一模态主导梯度更新
通过合理选择工作流和配置方式,可以充分发挥Omniverse Orbit在机器人视觉伺服任务中的强大能力,实现高效的多模态强化学习训练。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134