SavvyCAN 开源项目教程
1. 项目介绍
SavvyCAN 是一个基于 Qt 的跨平台 CAN 总线工具,主要用于 CAN 总线的加载、保存和捕获。该项目旨在帮助用户进行 CAN 总线的可视化、逆向工程、调试和捕获。SavvyCAN 支持多种 CAN 总线设备,包括 EVTV 的 CANDue 板、Macchina M2 和 Teensy 3.x 板等。此外,SavvyCAN 还支持多种 CAN 总线接口,如 PeakCAN、Vector、SocketCAN 等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件:
- Qt 5.14.x 或更高版本
- Git
2.2 下载并编译项目
-
克隆项目仓库:
git clone https://github.com/collin80/SavvyCAN.git cd SavvyCAN
-
使用 Qt 的 qmake 工具生成 Makefile:
~/Qt/5.14/gcc_64/bin/qmake
-
编译项目:
make
-
运行 SavvyCAN:
./SavvyCAN
2.3 调试模式编译
如果你需要更多的调试信息,可以使用以下命令进行调试模式编译:
qmake CONFIG+=debug
make
3. 应用案例和最佳实践
3.1 逆向工程
SavvyCAN 提供了强大的逆向工程功能,可以帮助用户分析和理解 CAN 总线上的数据。通过捕获和分析 CAN 帧,用户可以识别出不同信号的含义,从而进行进一步的开发和调试。
3.2 多设备同时捕获
SavvyCAN 支持同时连接多个 CAN 总线设备,并进行数据捕获。这对于需要同时监控多个 CAN 总线的应用场景非常有用,例如车辆诊断和监控系统。
3.3 数据记录与回放
SavvyCAN 可以将捕获的 CAN 数据保存为多种格式,如 BusMaster 日志文件、Microchip 日志文件、CRTD 格式等。用户可以随时回放这些数据,以便进行进一步的分析和调试。
4. 典型生态项目
4.1 GVRET 固件
GVRET 固件是 SavvyCAN 的配套固件,适用于 EVTV 的 CANDue 板。该固件允许 SavvyCAN 与硬件设备进行通信,并捕获 CAN 总线数据。
4.2 Macchina M2
Macchina M2 是一个开源的汽车电子平台,支持 CAN 总线通信。SavvyCAN 可以与 Macchina M2 配合使用,进行 CAN 总线的调试和数据捕获。
4.3 Teensy 3.x
Teensy 3.x 是一个低成本的开发板,支持 CAN 总线通信。SavvyCAN 可以与 Teensy 3.x 配合使用,进行 CAN 总线的开发和调试。
通过以上模块的介绍,用户可以快速了解 SavvyCAN 项目的基本情况,并掌握其快速启动和应用的方法。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09