解决Mobile-Deep-Learning编译中OpenCL库生成问题
2025-05-31 04:07:45作者:鲍丁臣Ursa
在基于Mobile-Deep-Learning项目进行开发时,开发者可能会遇到一个常见问题:使用相同的编译命令有时能成功生成包含Python whl包和各种so文件的inference_lite_lib.armlinux.armv8.opencl目录,而有时却无法生成该目录。这种情况通常发生在修改代码后尝试增量编译时。
问题分析
当执行标准编译命令时:
./lite/tools/build_linux.sh --arch=armv8 --toolchain=gcc --with_opencl=ON --with_log=ON --with_profile=ON --with_extra=ON --with_python=ON
理论上应该在build.lite.linux.armv8.gcc.opencl目录下生成inference_lite_lib.armlinux.armv8.opencl目录结构。但实际开发中,特别是在代码修改后的增量编译场景下,可能会出现该目录缺失的情况。
解决方案
针对这一问题,Mobile-Deep-Learning项目维护者提供了专业的解决方案:
- 直接进入构建目录:
cd build.lite.linux.armv8.gcc.opencl
- 执行特定构建目标:
make -j publish_inference
这个命令会专门触发推理库的发布过程,确保生成完整的inference_lite_lib.armlinux.armv8.opencl目录结构,包括Python的whl包和所有必要的so文件。
技术背景
这种现象的根本原因在于项目的构建系统设计。当进行完整构建时,构建脚本会自动处理所有依赖关系和输出目标。但在增量构建场景下,特别是当修改了某些关键文件后,构建系统可能不会自动触发所有必要的构建步骤。
publish_inference是一个专门设计的目标,它确保无论之前的构建状态如何,都会完整地生成推理库所需的所有输出文件。这在持续集成/持续部署(CI/CD)流程中特别有用,可以保证每次构建都能产生一致的输出。
最佳实践建议
- 在进行重要修改后,建议执行完整构建而非增量构建
- 如果只需要更新推理库部分,可以使用上述的
publish_inference目标 - 在自动化脚本中,可以考虑先执行完整构建,后续使用增量构建提高效率
- 定期清理构建目录可以避免一些潜在的构建问题
通过理解这些构建机制,开发者可以更高效地使用Mobile-Deep-Learning项目进行开发工作,避免在构建环节浪费时间。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137