Optax项目中实现Extra-Gradient优化方法的技术解析
2025-07-07 03:36:57作者:钟日瑜
在深度学习优化领域,Optax作为JAX生态中的优化库,提供了丰富的优化算法实现。本文将深入探讨如何在Optax中正确实现Extra-Gradient(额外梯度)优化方法,这是一种在策略优化和对抗训练中常用的优化技术。
Extra-Gradient方法原理
Extra-Gradient方法的核心思想是通过两次梯度计算来获得更稳定的更新方向。其数学表达式为:
- 中间点计算:x_{k+1/2} = x_k - η∇f(x_k)
- 最终更新:x_{k+1} = x_k - η∇f(x_{k+1/2})
这种方法相比标准梯度下降能提供更好的收敛性,特别适用于非凸优化问题。
常见实现误区
许多开发者初次尝试在Optax中实现Extra-Gradient时,会直接在梯度变换(GradientTransformation)中计算中间梯度,例如:
def extra_gradient_update(grads, params):
# 计算中间参数
mid_updates = jax.tree.map(lambda g: -learning_rate * g, grads)
mid_params = optax.apply_updates(params, mid_updates)
# 计算中间梯度
mid_grads = jax.grad(func)(mid_params)
# 最终更新
updates = jax.tree.map(lambda g: -learning_rate * g, mid_grads)
return updates
这种实现虽然单独使用可行,但与Optax的multi_transform结合时会出现问题,因为GradientTransformation的设计初衷是对梯度进行变换,而非包含完整的优化过程。
正确实现方案
根据Optax的设计哲学,正确的实现方式应该:
- 使用状态保持步数计数器
- 交替执行标准梯度步和额外梯度步
- 在适当步骤使用保存的参数
示例实现思路:
def extra_gradient():
def init_fn(params):
return {
'step': jnp.array(0),
'saved_params': params
}
def update_fn(grads, state, params):
step = state['step']
# 奇数步使用保存的参数
use_saved = step % 2 == 1
target_params = jax.lax.cond(
use_saved,
lambda: state['saved_params'],
lambda: params
)
updates = jax.tree.map(lambda g: -learning_rate * g, grads)
new_state = {
'step': step + 1,
'saved_params': jax.lax.cond(
use_saved,
lambda: params, # 重置保存的参数
lambda: optax.apply_updates(params, updates) # 保存中间点
}
return updates, new_state
return optax.GradientTransformation(init_fn, update_fn)
多参数优化场景
当需要对不同参数使用不同优化策略时,可以结合multi_transform使用上述实现。例如对参数x和y分别使用正负学习率的Extra-Gradient:
opt = optax.multi_transform(
{
'x_opt': extra_gradient(0.01),
'y_opt': extra_gradient(-0.01)
},
{
'x': 'x_opt',
'y': 'y_opt'
}
)
实现要点总结
- GradientTransformation应专注于梯度变换,避免包含参数更新逻辑
- 使用状态管理来跟踪优化过程的不同阶段
- 对于多步优化方法,合理利用保存的中间状态
- 与multi_transform结合时,确保每个子优化器的独立性
通过这种方式,我们既遵循了Optax的设计原则,又能实现复杂的优化算法,为各类优化问题提供灵活的解决方案。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0