Optax项目中实现Extra-Gradient优化方法的技术解析
2025-07-07 03:36:57作者:钟日瑜
在深度学习优化领域,Optax作为JAX生态中的优化库,提供了丰富的优化算法实现。本文将深入探讨如何在Optax中正确实现Extra-Gradient(额外梯度)优化方法,这是一种在策略优化和对抗训练中常用的优化技术。
Extra-Gradient方法原理
Extra-Gradient方法的核心思想是通过两次梯度计算来获得更稳定的更新方向。其数学表达式为:
- 中间点计算:x_{k+1/2} = x_k - η∇f(x_k)
- 最终更新:x_{k+1} = x_k - η∇f(x_{k+1/2})
这种方法相比标准梯度下降能提供更好的收敛性,特别适用于非凸优化问题。
常见实现误区
许多开发者初次尝试在Optax中实现Extra-Gradient时,会直接在梯度变换(GradientTransformation)中计算中间梯度,例如:
def extra_gradient_update(grads, params):
# 计算中间参数
mid_updates = jax.tree.map(lambda g: -learning_rate * g, grads)
mid_params = optax.apply_updates(params, mid_updates)
# 计算中间梯度
mid_grads = jax.grad(func)(mid_params)
# 最终更新
updates = jax.tree.map(lambda g: -learning_rate * g, mid_grads)
return updates
这种实现虽然单独使用可行,但与Optax的multi_transform结合时会出现问题,因为GradientTransformation的设计初衷是对梯度进行变换,而非包含完整的优化过程。
正确实现方案
根据Optax的设计哲学,正确的实现方式应该:
- 使用状态保持步数计数器
- 交替执行标准梯度步和额外梯度步
- 在适当步骤使用保存的参数
示例实现思路:
def extra_gradient():
def init_fn(params):
return {
'step': jnp.array(0),
'saved_params': params
}
def update_fn(grads, state, params):
step = state['step']
# 奇数步使用保存的参数
use_saved = step % 2 == 1
target_params = jax.lax.cond(
use_saved,
lambda: state['saved_params'],
lambda: params
)
updates = jax.tree.map(lambda g: -learning_rate * g, grads)
new_state = {
'step': step + 1,
'saved_params': jax.lax.cond(
use_saved,
lambda: params, # 重置保存的参数
lambda: optax.apply_updates(params, updates) # 保存中间点
}
return updates, new_state
return optax.GradientTransformation(init_fn, update_fn)
多参数优化场景
当需要对不同参数使用不同优化策略时,可以结合multi_transform使用上述实现。例如对参数x和y分别使用正负学习率的Extra-Gradient:
opt = optax.multi_transform(
{
'x_opt': extra_gradient(0.01),
'y_opt': extra_gradient(-0.01)
},
{
'x': 'x_opt',
'y': 'y_opt'
}
)
实现要点总结
- GradientTransformation应专注于梯度变换,避免包含参数更新逻辑
- 使用状态管理来跟踪优化过程的不同阶段
- 对于多步优化方法,合理利用保存的中间状态
- 与multi_transform结合时,确保每个子优化器的独立性
通过这种方式,我们既遵循了Optax的设计原则,又能实现复杂的优化算法,为各类优化问题提供灵活的解决方案。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0315- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
272
311

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3