ImageBind 开源项目教程
2024-08-16 02:12:29作者:贡沫苏Truman
项目介绍
ImageBind 是由 Meta AI 开发的一个开源项目,旨在通过学习六种不同模态(图像、文本、音频、深度、热像和IMU数据)的联合嵌入空间,实现跨模态的应用。该项目能够支持多种新颖的应用,如跨模态检索、模态算术组合、跨模态检测和生成等。ImageBind 利用大规模视觉-语言模型,扩展了这些模型在多模态特征上的能力。
项目快速启动
环境准备
首先,确保安装了 PyTorch 1.13+ 和其他第三方依赖:
conda create --name imagebind python=3.10 -y
conda activate imagebind
pip install torch soundfile
下载和加载模型
从 GitHub 仓库下载 ImageBind 模型,并加载预训练模型:
from imagebind import data
import torch
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType
# 定义输入数据
text_list = ["A dog", "A car", "A bird"]
image_paths = ["assets/dog_image.jpg", "assets/car_image.jpg", "assets/bird_image.jpg"]
audio_paths = ["assets/dog_audio.wav", "assets/car_audio.wav", "assets/bird_audio.wav"]
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# 实例化模型
model = imagebind_model.imagebind_huge(pretrained=True)
model.eval()
model.to(device)
# 加载数据
inputs = {
ModalityType.TEXT: data.load_and_transform_text(text_list, device),
ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device)
}
# 运行模型
with torch.no_grad():
embeddings = model(inputs)
应用案例和最佳实践
跨模态检索
ImageBind 可以用于跨模态检索,例如根据音频检索相关图像或文本。以下是一个简单的示例:
# 假设我们已经得到了 embeddings
text_embeddings = embeddings[ModalityType.TEXT]
image_embeddings = embeddings[ModalityType.VISION]
audio_embeddings = embeddings[ModalityType.AUDIO]
# 根据音频检索相关图像
audio_index = 0 # 选择第一个音频
similarity = torch.cosine_similarity(audio_embeddings[audio_index], image_embeddings)
most_similar_image_index = torch.argmax(similarity)
print(f"Most similar image to the audio is at index {most_similar_image_index}")
模态算术组合
ImageBind 支持模态算术组合,例如通过文本和图像的嵌入进行算术操作,生成新的嵌入:
# 假设我们已经得到了 embeddings
text_embedding = text_embeddings[0]
image_embedding = image_embeddings[0]
# 通过算术操作生成新的嵌入
new_embedding = text_embedding + image_embedding
典型生态项目
ImageBind 可以与其他开源项目结合使用,例如:
- CLIP: 用于图像和文本的联合嵌入,可以与 ImageBind 结合进行更复杂的跨模态任务。
- AudioSet: 用于音频分类和检索,可以与 ImageBind 结合进行音频-图像的跨模态检索。
- OpenCV: 用于图像处理和计算机视觉任务,可以与 ImageBind 结合进行图像的预处理和后处理。
通过这些生态项目的结合,可以进一步扩展 ImageBind 的应用范围和功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249