深入解析4M项目的多模态应用与实现
2025-07-09 03:47:09作者:翟江哲Frasier
4M项目概述
4M是由苹果公司开发的一个开创性多模态基础模型,能够处理多达21种不同的输入和输出模态。该项目采用了一种创新的"多模态掩码建模"方法,通过将各种模态统一表示为离散标记序列,实现了任意模态之间的相互转换和生成。
4M作为视觉骨干网络的应用
4M模型可以被灵活地用作视觉Transformer(ViT)骨干网络。开发者可以通过加载预训练权重,仅使用其编码器部分,并添加自定义的分类头。例如,可以构建一个简单的1000类分类器:
import torch.nn as nn
from einops.layers.torch import Reduce
from fourm.utils import load_safetensors
from fourm.models.fm_vit import FMViT
device = 'cuda' if torch.cuda.is_available() else 'cpu'
ckpt, config = load_safetensors('./4M-21_B.safetensors')
cls_head = nn.Sequential(
Reduce('b n d -> b d', 'mean'),
nn.LayerNorm(config['dim'], eps=1e-6),
nn.Linear(config['dim'], 1000),
)
fmvit = FMViT(config, output_head=cls_head).to(device)
msg = fmvit.load_state_dict(ckpt, strict=False)
这种用法特别适合需要强大视觉特征提取能力的下游任务,如图像分类、目标检测等。
多模态检索的实现原理
4M项目的一个独特优势在于其多模态检索能力。与传统方法不同,4M通过生成目标模态的表示来实现检索:
- 对于查询输入(可以是任意模态组合),模型直接生成目标模态(如DINOv2或ImageBind)的全局嵌入表示
- 这些生成的嵌入通过专门的标记器解码
- 在检索阶段,通过计算余弦相似度找到最匹配的样本
这种方法避免了生成中间图像表示的步骤,大大提高了效率。值得注意的是,即使使用单次前向传播生成嵌入(而非多步迭代),也能获得相当不错的检索效果。
多模态统一表示的核心思想
4M项目的核心创新在于将所有模态统一表示为离散标记序列:
- 每种模态都有固定的词汇表大小
- 模型为每种模态学习专门的嵌入层,将离散代码转换为向量
- 例外情况包括RGB像素和T5嵌入,它们通过学习的线性投影直接输入模型
这种统一表示使得模型能够:
- 处理任意模态组合作为输入或输出
- 实现跨模态转换和生成
- 灵活适应各种下游任务
实际应用场景
基于4M的多模态特性,它可以应用于多种场景:
- 视觉推理:如图文推理(VNLI),同时处理图像和文本输入进行分类
- 跨模态检索:如文本到图像检索,直接生成目标模态的嵌入表示
- 特征提取:作为强大的视觉骨干网络提取通用特征
- 模态转换:实现任意模态间的转换,如文本到深度图、图像到3D表示等
性能考量
在实际应用中,4M的推理时间与专用模型(如DINOv2)处于同一数量级。特别是在使用单次前向传播时,性能差异更小。这种效率使得4M在保持多模态灵活性的同时,也能满足实际应用的性能要求。
总结
4M项目代表了多模态AI研究的重要进展,通过统一的离散标记表示和创新的训练目标,实现了前所未有的模态灵活性和交互能力。无论是作为专用骨干网络,还是用于复杂的跨模态任务,4M都展现出强大的潜力。随着进一步的研究和优化,这种统一多模态框架有望成为下一代AI系统的基础构建块。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218