Grafana Tempo分布式部署中TraceQL查询错误的解决方案
问题现象
在使用Grafana Tempo 2.6.0版本进行分布式部署时,用户通过Grafana Cloud访问Tempo实例时遇到了"Error finding generators in Querier.queryRangeRecent: empty ring"的错误提示。该错误发生在尝试查询TraceQL指标时,系统日志显示服务启动正常,但在执行查询操作时出现异常。
问题分析
这个错误的核心原因是Tempo分布式部署中缺少必要的Metrics Generator组件。在Tempo 2.6.0版本中,TraceQL指标查询功能需要Metrics Generator的支持,而默认的helm chart配置并未启用该组件。
Metrics Generator是Tempo架构中的一个关键组件,它负责:
- 从跟踪数据中生成指标
- 维护指标数据的环形哈希环(ring)
- 为TraceQL查询提供必要的指标计算能力
当Querier组件尝试执行TraceQL查询时,它会首先检查Metrics Generator环中是否有可用实例。如果环为空(empty ring),就会抛出上述错误。
解决方案
要解决这个问题,需要在Tempo的helm chart配置中显式启用Metrics Generator组件。具体配置如下:
metricsGenerator:
enabled: true
remoteWriteUrl: "http://prometheus:9090/api/v1/write"
配置说明:
enabled: true启用Metrics Generator组件remoteWriteUrl指定生成的指标将被发送到的Prometheus实例地址
部署完成后,可以通过以下方式验证Metrics Generator是否正常工作:
- 端口转发到Querier服务
- 访问Metrics Generator环状态接口
部署建议
- 根据集群规模合理设置Metrics Generator的副本数
- 确保Metrics Generator有足够的资源配额
- 监控Metrics Generator的性能指标
- 考虑为生成的指标配置适当的保留策略
版本兼容性说明
这个问题主要影响Tempo 2.6.0及以上版本,因为TraceQL指标查询功能是在这些版本中引入的。对于早期版本,由于不包含TraceQL指标查询功能,因此不会出现此类错误。
总结
在部署Grafana Tempo分布式系统时,如果需要使用TraceQL指标查询功能,必须确保Metrics Generator组件已正确配置和启用。这个案例也提醒我们,在使用开源监控系统的新功能时,需要仔细阅读相关文档,了解各组件之间的依赖关系,才能构建出稳定可靠的监控体系。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00