FastMCP项目中如何正确暴露FastAPI的Swagger文档
2025-05-30 07:10:16作者:卓艾滢Kingsley
在FastMCP项目中,开发者经常遇到一个常见问题:当使用FastMCP.from_fastapi方法将FastAPI应用转换为MCP服务器后,原本FastAPI自带的Swagger文档接口/docs无法正常访问。本文将深入分析这一问题的原因,并提供几种可行的解决方案。
问题本质分析
FastMCP的from_fastapi方法实际上创建的是一个MCP服务器,它虽然能够暴露FastAPI应用的路由,但本质上已经不再是FastAPI应用。这种转换导致了原生FastAPI特性的丢失,包括Swagger文档接口。
解决方案一:反向挂载MCP服务器
正确的架构设计应该是将MCP服务器作为子路由挂载到主FastAPI应用中,而不是反过来。以下是实现这一架构的代码示例:
# 创建SSE传输层
sse_transport = SseServerTransport("/mcp/messages/")
@asynccontextmanager
async def lifespan(app: FastAPI):
# 初始化MCP服务器
app.state.mcp = FastMCP.from_fastapi(app=app)
# 存储SSE传输层
app.state.sse = sse_transport
# 创建主FastAPI应用
app = FastAPI(
openapi_url="/openapi.json",
lifespan=lifespan,
redirect_slashes=False
)
# 挂载MCP消息处理路由
app.router.routes.append(Mount("/mcp/messages", app=sse_transport.handle_post_message))
这种架构保持了FastAPI应用的主体地位,MCP服务器作为其子组件运行,从而保留了所有FastAPI原生功能。
解决方案二:文档增强技巧
对于需要特别说明的MCP端点,可以通过添加文档路由来增强Swagger文档的完整性:
@app.get("/mcp/messages", tags=["MCP"], include_in_schema=True)
def messages_docs():
"""
SSE通信的消息端点
此端点用于向SSE客户端发送消息。
注意:此路由仅用于文档目的。
实际实现由SSE传输层处理。
"""
pass
这种方法既保持了接口文档的完整性,又不会影响实际的功能实现。
解决方案三:SSE端点实现
对于需要建立SSE连接的端点,可以这样实现:
@app.get("/mcp/sse", tags=["MCP"])
async def handle_sse(request: Request):
"""
SSE端点,连接到MCP服务器
此端点建立与客户端的服务器发送事件(SSE)连接,
并将通信转发到模型上下文协议服务器。
"""
mcp = request.app.state.mcp
async with sse_transport.connect_sse(request.scope, request.receive, request._send) as (
read_stream,
write_stream,
):
await mcp._mcp_server.run(
read_stream,
write_stream,
mcp._mcp_server.create_initialization_options(),
)
最佳实践建议
- 架构设计:始终将MCP服务器作为FastAPI应用的子组件,而不是相反
- 文档完整性:为所有特殊端点添加文档路由,保持API文档的完整性
- 生命周期管理:合理利用FastAPI的生命周期管理机制初始化MCP相关组件
- 路由组织:使用清晰的路由前缀(如
/mcp)组织MCP相关端点
通过以上方法,开发者可以在使用FastMCP的同时,仍然享受FastAPI提供的完整功能,包括Swagger文档接口。这种架构既保持了功能的完整性,又遵循了良好的设计原则。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19