FastMCP项目中如何正确暴露FastAPI的Swagger文档
2025-05-30 17:44:31作者:卓艾滢Kingsley
在FastMCP项目中,开发者经常遇到一个常见问题:当使用FastMCP.from_fastapi方法将FastAPI应用转换为MCP服务器后,原本FastAPI自带的Swagger文档接口/docs无法正常访问。本文将深入分析这一问题的原因,并提供几种可行的解决方案。
问题本质分析
FastMCP的from_fastapi方法实际上创建的是一个MCP服务器,它虽然能够暴露FastAPI应用的路由,但本质上已经不再是FastAPI应用。这种转换导致了原生FastAPI特性的丢失,包括Swagger文档接口。
解决方案一:反向挂载MCP服务器
正确的架构设计应该是将MCP服务器作为子路由挂载到主FastAPI应用中,而不是反过来。以下是实现这一架构的代码示例:
# 创建SSE传输层
sse_transport = SseServerTransport("/mcp/messages/")
@asynccontextmanager
async def lifespan(app: FastAPI):
# 初始化MCP服务器
app.state.mcp = FastMCP.from_fastapi(app=app)
# 存储SSE传输层
app.state.sse = sse_transport
# 创建主FastAPI应用
app = FastAPI(
openapi_url="/openapi.json",
lifespan=lifespan,
redirect_slashes=False
)
# 挂载MCP消息处理路由
app.router.routes.append(Mount("/mcp/messages", app=sse_transport.handle_post_message))
这种架构保持了FastAPI应用的主体地位,MCP服务器作为其子组件运行,从而保留了所有FastAPI原生功能。
解决方案二:文档增强技巧
对于需要特别说明的MCP端点,可以通过添加文档路由来增强Swagger文档的完整性:
@app.get("/mcp/messages", tags=["MCP"], include_in_schema=True)
def messages_docs():
"""
SSE通信的消息端点
此端点用于向SSE客户端发送消息。
注意:此路由仅用于文档目的。
实际实现由SSE传输层处理。
"""
pass
这种方法既保持了接口文档的完整性,又不会影响实际的功能实现。
解决方案三:SSE端点实现
对于需要建立SSE连接的端点,可以这样实现:
@app.get("/mcp/sse", tags=["MCP"])
async def handle_sse(request: Request):
"""
SSE端点,连接到MCP服务器
此端点建立与客户端的服务器发送事件(SSE)连接,
并将通信转发到模型上下文协议服务器。
"""
mcp = request.app.state.mcp
async with sse_transport.connect_sse(request.scope, request.receive, request._send) as (
read_stream,
write_stream,
):
await mcp._mcp_server.run(
read_stream,
write_stream,
mcp._mcp_server.create_initialization_options(),
)
最佳实践建议
- 架构设计:始终将MCP服务器作为FastAPI应用的子组件,而不是相反
- 文档完整性:为所有特殊端点添加文档路由,保持API文档的完整性
- 生命周期管理:合理利用FastAPI的生命周期管理机制初始化MCP相关组件
- 路由组织:使用清晰的路由前缀(如
/mcp)组织MCP相关端点
通过以上方法,开发者可以在使用FastMCP的同时,仍然享受FastAPI提供的完整功能,包括Swagger文档接口。这种架构既保持了功能的完整性,又遵循了良好的设计原则。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258