Apache APISIX 证书上传问题分析与解决方案
问题背景
在使用 Apache APISIX 及其 Dashboard 组件时,用户通过 Dashboard 界面上传 SSL 证书后,APISIX Pod 会出现错误日志,提示"additional properties forbidden, found validity_end"等验证错误。这个问题主要发生在 APISIX 3.9.x 版本与 Dashboard 3.0.0 版本的组合使用场景中。
问题现象
当用户通过 APISIX Dashboard 上传 SSL 证书后,系统会在 etcd 中存储包含以下字段的证书数据:
- validity_start
- validity_end
这些额外的字段会导致 APISIX 服务在启动或重新加载配置时报错,错误信息表明 etcd 中存储的数据包含了不被允许的额外属性。
根本原因
经过分析,这个问题是由于 APISIX Dashboard 与 APISIX 核心组件之间的版本兼容性问题导致的。具体表现为:
- APISIX Dashboard 3.0.0 版本在上传证书时,会自动添加证书的有效期信息(validity_start 和 validity_end)
- 这些字段不被 APISIX 3.9.x 版本的证书模式验证所接受
- 当 APISIX 从 etcd 加载这些配置时,会触发模式验证错误
临时解决方案
对于急需解决问题的用户,可以采用以下临时方案:
方案一:使用 APISIX Admin API 直接上传证书
通过 APISIX 的管理 API 直接上传证书可以避免这个问题,因为 API 不会添加额外的有效期字段。
示例命令:
CERT=$(awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}' your_domain.pem)
KEY=$(awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}' your_domain.key)
curl http://{APISIX_ADMIN_ADDRESS}:9180/apisix/admin/ssls -X POST -d '{
"cert": "'"$CERT"'",
"key": "'"$KEY"'",
"snis": ["your.domain"]
}' -H 'X-API-KEY: {your_api_key}'
方案二:手动清理 etcd 中的无效字段
对于已经通过 Dashboard 上传的证书,可以手动编辑 etcd 中的数据,删除 validity_start 和 validity_end 字段。
长期解决方案
开发团队已经在 APISIX Dashboard 的主分支中修复了这个问题。用户可以通过以下方式获取修复后的版本:
- 从源码构建 Dashboard:
git clone https://github.com/apache/apisix-docker.git
cd apisix-docker/dashboard
docker build -f Dockerfile.alpine --build-arg APISIX_DASHBOARD_TAG=master -t apisix-dashboard:master .
- 等待官方发布包含此修复的稳定版本
最佳实践建议
- 在生产环境中,建议先测试证书上传功能
- 保持 APISIX 核心组件和 Dashboard 的版本同步更新
- 对于关键业务,考虑使用 API 而非 Dashboard 进行证书管理
- 定期检查 APISIX 日志,及时发现类似配置问题
总结
证书上传问题是 APISIX 生态系统中组件版本不匹配导致的典型问题。通过理解问题的根本原因,用户可以采取适当的临时解决方案,同时等待官方修复。这也提醒我们在使用开源组件时,需要关注各组件版本间的兼容性,特别是在进行升级时,应该全面测试各项功能。
随着 APISIX 项目的持续发展,开发团队正在努力改进 Dashboard 与新版本 APISIX 的兼容性,未来版本将提供更稳定、更一致的用户体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00