Decoupled Attention Network 项目教程
1. 项目介绍
Decoupled Attention Network (DAN) 是一个用于文本识别的 PyTorch 实现项目。该项目基于论文 "Decoupled Attention Network for Text Recognition",发表于 AAAI 2020。DAN 是一个高效、灵活且鲁棒的端到端文本识别器,由三个主要组件组成:特征编码器、注意力机制和解码器。该项目旨在提供一个易于使用的框架,帮助研究人员和开发者快速实现和测试文本识别模型。
2. 项目快速启动
2.1 环境准备
建议使用 Anaconda 来管理 Python 环境。以下是项目所需的依赖库:
- Python 2.7
- PyTorch (推荐版本 0.4.1 或 1.1.0)
- TorchVision
- OpenCV
- PIL (Pillow)
- Colour
- LMDB
- editdistance
可以通过以下命令安装依赖库:
pip install -r requirements.txt
2.2 数据准备
2.2.1 手写文本数据
项目提供了 IAM 数据集的处理代码。您需要下载 IAM 数据集,并将解压后的文件放入 data/IAM/ 目录中。
2.2.2 场景文本数据
场景文本数据需要转换为 LMDB 格式。您可以使用提供的工具将数据集转换为 LMDB 格式,或者下载预处理好的数据集。
2.3 训练和测试
修改配置文件中的路径,确保导入路径正确。然后运行以下命令开始训练和测试:
python main.py
3. 应用案例和最佳实践
3.1 手写文本识别
DAN 在手写文本识别任务中表现出色。通过使用 IAM 数据集进行训练,模型在 CER (Character Error Rate) 和 WER (Word Error Rate) 指标上取得了显著的成果。
3.2 场景文本识别
对于场景文本识别,DAN 同样表现优异。通过使用预处理好的场景文本数据集进行训练,模型在 IIIT5K 数据集上达到了 93.3% 的准确率。
4. 典型生态项目
4.1 PyTorch
DAN 项目基于 PyTorch 框架,充分利用了 PyTorch 的灵活性和高效性。PyTorch 是一个广泛使用的深度学习框架,提供了丰富的工具和库,支持快速开发和实验。
4.2 OpenCV
OpenCV 在图像处理和计算机视觉任务中广泛使用。DAN 项目中使用了 OpenCV 进行图像预处理和特征提取,增强了模型的性能。
4.3 LMDB
LMDB 是一个高性能的内存映射数据库,适用于大规模数据集的存储和访问。DAN 项目使用 LMDB 格式存储和加载数据,提高了数据处理的效率。
通过以上模块的介绍,您可以快速了解并开始使用 Decoupled Attention Network 项目。希望这个教程对您的研究和开发工作有所帮助!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00