PyTorch-Metric-Learning中多标签分类问题的解决方案
在机器学习领域,多标签分类是一个常见且具有挑战性的问题。传统的分类任务通常假设每个样本只属于一个类别,但在实际应用中,一个样本可能同时属于多个类别。本文将介绍如何在PyTorch-Metric-Learning框架中处理这种多标签分类场景。
多标签分类的挑战
多标签分类与传统的单标签分类不同,它允许一个样本同时拥有多个类别标签。这种场景在现实世界中非常普遍,例如:
- 一张图片可能同时包含"猫"和"狗"
- 一篇文档可能同时属于"科技"和"金融"两个类别
- 一个基因可能具有多种功能特征
在度量学习(Metric Learning)中,这种多标签特性带来了额外的复杂性,因为我们需要考虑样本之间的多重相似关系。
PyTorch-Metric-Learning的解决方案
PyTorch-Metric-Learning提供了一种灵活的方式来处理多标签分类问题。核心思想是绕过传统的类别标签,直接指定样本之间的配对关系。
使用indices_tuple参数
该框架中的多种对比损失函数(如ContrastiveLoss、NTXentLoss等)支持通过indices_tuple参数直接指定正负样本对。这种方式比使用类别标签更加灵活,可以精确控制哪些样本应该相似(正对),哪些应该不相似(负对)。
indices_tuple是一个包含四个元素的元组,结构如下:
- 第一个元素:锚样本的索引
- 第二个元素:正样本的索引
- 第三个元素:负样本的索引
- 第四个元素:三元组损失中的第三个元素(如适用)
实现示例
假设我们有一个批次中的样本,其中某些样本属于多个类别。我们可以这样构建训练过程:
import torch
from pytorch_metric_learning import losses
# 假设我们有4个样本的嵌入向量
embeddings = torch.randn(4, 128) # 4个样本,每个128维
# 手动指定配对关系
# 假设样本0和1是正对,样本0和2是负对
indices_tuple = (
torch.tensor([0]), # 锚样本
torch.tensor([1]), # 正样本
torch.tensor([2]), # 负样本
None
)
loss_fn = losses.ContrastiveLoss()
loss = loss_fn(embeddings, indices_tuple=indices_tuple)
支持该特性的损失函数
PyTorch-Metric-Learning中支持直接使用indices_tuple的损失函数包括但不限于:
- ContrastiveLoss
- NTXentLoss
- TripletMarginLoss
- MultiSimilarityLoss
- CircleLoss
- FastAPLoss
这些损失函数为处理复杂的多标签关系提供了强大的工具。
实际应用建议
在实际应用中处理多标签分类问题时,可以考虑以下策略:
-
构建正负对矩阵:根据多标签信息,构建一个矩阵明确指定哪些样本对是正对,哪些是负对。
-
采样策略:对于大规模数据集,需要设计合理的采样策略来选择有意义的正负对,避免计算所有可能的组合。
-
损失函数选择:根据具体任务特点选择合适的损失函数。例如,对于高度不平衡的多标签数据,可能需要选择对负样本更敏感的损失函数。
-
结合传统方法:可以将这种基于配对的方法与传统多标签分类方法结合,获得更好的性能。
通过灵活使用PyTorch-Metric-Learning提供的这些工具,开发者可以有效地解决各种复杂的多标签分类问题,构建出更加强大和灵活的机器学习模型。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00