AWS Deep Learning Containers发布PyTorch 2.4.0 Graviton CPU推理镜像
项目背景
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,这些镜像已经过优化,可在AWS云平台上高效运行。DLC包含了主流深度学习框架及其依赖项,帮助开发者快速部署机器学习工作负载,而无需花费时间配置底层环境。
最新版本特性
AWS近日发布了PyTorch 2.4.0版本的Graviton CPU推理镜像,这是专为基于ARM架构的AWS Graviton处理器优化的容器镜像。该版本包含以下关键特性:
-
PyTorch 2.4.0支持:提供了PyTorch框架的最新稳定版本,包含性能改进和新特性。
-
Graviton处理器优化:针对AWS Graviton ARM架构进行了专门优化,能够在Graviton实例上提供更好的性价比。
-
Python 3.11环境:基于Python 3.11构建,提供最新的Python语言特性和性能改进。
-
Ubuntu 22.04基础:使用Ubuntu 22.04 LTS作为基础操作系统,确保系统稳定性和长期支持。
-
完整工具链:预装了常用的深度学习工具包,包括NumPy、SciPy、OpenCV等,以及模型服务工具TorchServe和Torch Model Archiver。
技术细节
该镜像包含了深度学习工作负载所需的关键组件:
- 核心框架:PyTorch 2.4.0+cpu、TorchVision 0.19.0+cpu、TorchAudio 2.4.0+cpu
- 数据处理:NumPy 1.26.4、SciPy 1.14.1、OpenCV-Python 4.10.0.84
- 模型服务:TorchServe 0.12.0、Torch Model Archiver 0.12.0
- 开发工具:Cython 3.0.11、Ninja 1.11.1.1
- AWS集成:AWS CLI 1.35.20、Boto3 1.35.54
镜像基于Ubuntu 22.04构建,包含了必要的系统库如libgcc和libstdc++的多个版本,确保兼容性。同时提供了开发者常用的工具如Emacs编辑器。
使用场景
这个Graviton优化的PyTorch推理镜像特别适合以下场景:
-
成本敏感型推理工作负载:Graviton实例通常比同级别的x86实例更具成本效益,适合大规模部署推理服务。
-
边缘计算场景:ARM架构的低功耗特性使其适合边缘设备部署。
-
持续集成/持续部署(CI/CD):预配置的环境可以加速模型测试和部署流程。
-
教学和研究:提供开箱即用的PyTorch环境,方便快速开展实验。
总结
AWS Deep Learning Containers的这次更新为使用PyTorch框架的开发者提供了针对Graviton处理器优化的最新版本环境。通过使用这些预配置的容器镜像,开发者可以专注于模型开发和部署,而不必花费时间在环境配置上。特别是对于希望在AWS Graviton实例上运行PyTorch推理工作负载的用户,这个镜像提供了经过验证和优化的解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00