AWS Deep Learning Containers发布PyTorch 2.4.0 Graviton CPU推理镜像
项目背景
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,这些镜像已经过优化,可在AWS云平台上高效运行。DLC包含了主流深度学习框架及其依赖项,帮助开发者快速部署机器学习工作负载,而无需花费时间配置底层环境。
最新版本特性
AWS近日发布了PyTorch 2.4.0版本的Graviton CPU推理镜像,这是专为基于ARM架构的AWS Graviton处理器优化的容器镜像。该版本包含以下关键特性:
- 
PyTorch 2.4.0支持:提供了PyTorch框架的最新稳定版本,包含性能改进和新特性。 
- 
Graviton处理器优化:针对AWS Graviton ARM架构进行了专门优化,能够在Graviton实例上提供更好的性价比。 
- 
Python 3.11环境:基于Python 3.11构建,提供最新的Python语言特性和性能改进。 
- 
Ubuntu 22.04基础:使用Ubuntu 22.04 LTS作为基础操作系统,确保系统稳定性和长期支持。 
- 
完整工具链:预装了常用的深度学习工具包,包括NumPy、SciPy、OpenCV等,以及模型服务工具TorchServe和Torch Model Archiver。 
技术细节
该镜像包含了深度学习工作负载所需的关键组件:
- 核心框架:PyTorch 2.4.0+cpu、TorchVision 0.19.0+cpu、TorchAudio 2.4.0+cpu
- 数据处理:NumPy 1.26.4、SciPy 1.14.1、OpenCV-Python 4.10.0.84
- 模型服务:TorchServe 0.12.0、Torch Model Archiver 0.12.0
- 开发工具:Cython 3.0.11、Ninja 1.11.1.1
- AWS集成:AWS CLI 1.35.20、Boto3 1.35.54
镜像基于Ubuntu 22.04构建,包含了必要的系统库如libgcc和libstdc++的多个版本,确保兼容性。同时提供了开发者常用的工具如Emacs编辑器。
使用场景
这个Graviton优化的PyTorch推理镜像特别适合以下场景:
- 
成本敏感型推理工作负载:Graviton实例通常比同级别的x86实例更具成本效益,适合大规模部署推理服务。 
- 
边缘计算场景:ARM架构的低功耗特性使其适合边缘设备部署。 
- 
持续集成/持续部署(CI/CD):预配置的环境可以加速模型测试和部署流程。 
- 
教学和研究:提供开箱即用的PyTorch环境,方便快速开展实验。 
总结
AWS Deep Learning Containers的这次更新为使用PyTorch框架的开发者提供了针对Graviton处理器优化的最新版本环境。通过使用这些预配置的容器镜像,开发者可以专注于模型开发和部署,而不必花费时间在环境配置上。特别是对于希望在AWS Graviton实例上运行PyTorch推理工作负载的用户,这个镜像提供了经过验证和优化的解决方案。
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选
 docs
docs kernel
kernel pytorch
pytorch ops-math
ops-math flutter_flutter
flutter_flutter ohos_react_native
ohos_react_native cangjie_compiler
cangjie_compiler RuoYi-Vue3
RuoYi-Vue3 cangjie_test
cangjie_test Cangjie-Examples
Cangjie-Examples