AWS Deep Learning Containers发布PyTorch 2.4.0 Graviton CPU推理镜像
项目背景
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,这些镜像已经过优化,可在AWS云平台上高效运行。DLC包含了主流深度学习框架及其依赖项,帮助开发者快速部署机器学习工作负载,而无需花费时间配置底层环境。
最新版本特性
AWS近日发布了PyTorch 2.4.0版本的Graviton CPU推理镜像,这是专为基于ARM架构的AWS Graviton处理器优化的容器镜像。该版本包含以下关键特性:
-
PyTorch 2.4.0支持:提供了PyTorch框架的最新稳定版本,包含性能改进和新特性。
-
Graviton处理器优化:针对AWS Graviton ARM架构进行了专门优化,能够在Graviton实例上提供更好的性价比。
-
Python 3.11环境:基于Python 3.11构建,提供最新的Python语言特性和性能改进。
-
Ubuntu 22.04基础:使用Ubuntu 22.04 LTS作为基础操作系统,确保系统稳定性和长期支持。
-
完整工具链:预装了常用的深度学习工具包,包括NumPy、SciPy、OpenCV等,以及模型服务工具TorchServe和Torch Model Archiver。
技术细节
该镜像包含了深度学习工作负载所需的关键组件:
- 核心框架:PyTorch 2.4.0+cpu、TorchVision 0.19.0+cpu、TorchAudio 2.4.0+cpu
- 数据处理:NumPy 1.26.4、SciPy 1.14.1、OpenCV-Python 4.10.0.84
- 模型服务:TorchServe 0.12.0、Torch Model Archiver 0.12.0
- 开发工具:Cython 3.0.11、Ninja 1.11.1.1
- AWS集成:AWS CLI 1.35.20、Boto3 1.35.54
镜像基于Ubuntu 22.04构建,包含了必要的系统库如libgcc和libstdc++的多个版本,确保兼容性。同时提供了开发者常用的工具如Emacs编辑器。
使用场景
这个Graviton优化的PyTorch推理镜像特别适合以下场景:
-
成本敏感型推理工作负载:Graviton实例通常比同级别的x86实例更具成本效益,适合大规模部署推理服务。
-
边缘计算场景:ARM架构的低功耗特性使其适合边缘设备部署。
-
持续集成/持续部署(CI/CD):预配置的环境可以加速模型测试和部署流程。
-
教学和研究:提供开箱即用的PyTorch环境,方便快速开展实验。
总结
AWS Deep Learning Containers的这次更新为使用PyTorch框架的开发者提供了针对Graviton处理器优化的最新版本环境。通过使用这些预配置的容器镜像,开发者可以专注于模型开发和部署,而不必花费时间在环境配置上。特别是对于希望在AWS Graviton实例上运行PyTorch推理工作负载的用户,这个镜像提供了经过验证和优化的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00