首页
/ AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.18版本

AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.18版本

2025-07-07 13:10:53作者:庞眉杨Will

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架、依赖库和工具链,帮助开发者快速部署和运行深度学习工作负载。这些容器经过AWS官方优化,可直接在EC2、EKS等云服务上使用,大幅简化了深度学习环境的搭建过程。

近日,AWS发布了Deep Learning Containers项目中针对PyTorch框架的Graviton处理器优化版本v1.18。该版本基于PyTorch 2.4.0构建,专门为AWS Graviton处理器(基于ARM架构)进行了性能优化,适用于EC2实例上的推理场景。

核心特性与技术细节

基础环境配置

该容器镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境。作为推理专用容器,它包含了PyTorch生态系统中用于模型服务的关键组件:

  • PyTorch 2.4.0 + CPU版本
  • TorchVision 0.19.0
  • TorchAudio 2.4.0
  • TorchServe 0.12.0模型服务框架
  • Torch Model Archiver 0.12.0模型打包工具

关键依赖库版本

容器内预装了深度学习工作流中常用的Python库,并选择了经过验证的稳定版本:

  • 数值计算:NumPy 1.26.4、SciPy 1.14.1
  • 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
  • 开发工具:Cython 3.0.11、Ninja 1.11.1.1
  • AWS集成:boto3 1.35.54、awscli 1.35.20

系统级优化

针对Graviton ARM架构,容器内包含了必要的系统库和开发工具链:

  • GCC编译器相关库(libgcc-10-dev、libgcc-11-dev)
  • C++标准库(libstdc++-10-dev、libstdc++-11-dev)
  • 基础开发工具如Emacs编辑器

应用场景与优势

这个专为Graviton处理器优化的PyTorch推理容器特别适合以下场景:

  1. 成本敏感型推理服务:Graviton实例通常比同级别x86实例更具性价比,结合此优化容器可进一步降低推理成本
  2. 边缘计算场景:ARM架构的低功耗特性使其适合边缘设备部署
  3. 批量推理任务:经过优化的PyTorch运行时能够高效处理大批量推理请求

版本管理与兼容性

该容器镜像提供了多个标签别名,方便用户根据不同的版本策略进行引用:

  • 精确版本标签:2.4.0-cpu-py311-ubuntu22.04-ec2-v1.18
  • 主版本标签:2.4-cpu-py311-ubuntu22.04-ec2-v1
  • 简化标签:2.4-cpu-py311-ec2

这种灵活的标签策略既保证了生产环境的稳定性需求,又满足了开发测试环境的便利性。

总结

AWS Deep Learning Containers通过提供这个针对Graviton处理器优化的PyTorch推理容器,进一步丰富了其ARM生态的支持。对于已经在使用Graviton实例的用户,这个容器可以带来即时的性能提升;对于考虑迁移到ARM架构的用户,它提供了可靠的参考实现。随着ARM服务器生态的成熟,这类优化容器将成为降低AI推理成本的重要工具。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
269
2.54 K
flutter_flutterflutter_flutter
暂无简介
Dart
558
124
fountainfountain
一个用于服务器应用开发的综合工具库。 - 零配置文件 - 环境变量和命令行参数配置 - 约定优于配置 - 深刻利用仓颉语言特性 - 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
cangjie_runtimecangjie_runtime
仓颉编程语言运行时与标准库。
Cangjie
126
104
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
728
70