AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.18版本
2025-07-07 16:54:15作者:庞眉杨Will
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架、依赖库和工具链,帮助开发者快速部署和运行深度学习工作负载。这些容器经过AWS官方优化,可直接在EC2、EKS等云服务上使用,大幅简化了深度学习环境的搭建过程。
近日,AWS发布了Deep Learning Containers项目中针对PyTorch框架的Graviton处理器优化版本v1.18。该版本基于PyTorch 2.4.0构建,专门为AWS Graviton处理器(基于ARM架构)进行了性能优化,适用于EC2实例上的推理场景。
核心特性与技术细节
基础环境配置
该容器镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境。作为推理专用容器,它包含了PyTorch生态系统中用于模型服务的关键组件:
- PyTorch 2.4.0 + CPU版本
- TorchVision 0.19.0
- TorchAudio 2.4.0
- TorchServe 0.12.0模型服务框架
- Torch Model Archiver 0.12.0模型打包工具
关键依赖库版本
容器内预装了深度学习工作流中常用的Python库,并选择了经过验证的稳定版本:
- 数值计算:NumPy 1.26.4、SciPy 1.14.1
- 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
- 开发工具:Cython 3.0.11、Ninja 1.11.1.1
- AWS集成:boto3 1.35.54、awscli 1.35.20
系统级优化
针对Graviton ARM架构,容器内包含了必要的系统库和开发工具链:
- GCC编译器相关库(libgcc-10-dev、libgcc-11-dev)
- C++标准库(libstdc++-10-dev、libstdc++-11-dev)
- 基础开发工具如Emacs编辑器
应用场景与优势
这个专为Graviton处理器优化的PyTorch推理容器特别适合以下场景:
- 成本敏感型推理服务:Graviton实例通常比同级别x86实例更具性价比,结合此优化容器可进一步降低推理成本
- 边缘计算场景:ARM架构的低功耗特性使其适合边缘设备部署
- 批量推理任务:经过优化的PyTorch运行时能够高效处理大批量推理请求
版本管理与兼容性
该容器镜像提供了多个标签别名,方便用户根据不同的版本策略进行引用:
- 精确版本标签:2.4.0-cpu-py311-ubuntu22.04-ec2-v1.18
- 主版本标签:2.4-cpu-py311-ubuntu22.04-ec2-v1
- 简化标签:2.4-cpu-py311-ec2
这种灵活的标签策略既保证了生产环境的稳定性需求,又满足了开发测试环境的便利性。
总结
AWS Deep Learning Containers通过提供这个针对Graviton处理器优化的PyTorch推理容器,进一步丰富了其ARM生态的支持。对于已经在使用Graviton实例的用户,这个容器可以带来即时的性能提升;对于考虑迁移到ARM架构的用户,它提供了可靠的参考实现。随着ARM服务器生态的成熟,这类优化容器将成为降低AI推理成本的重要工具。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248