AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.18版本
2025-07-07 22:48:17作者:庞眉杨Will
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架、依赖库和工具链,帮助开发者快速部署和运行深度学习工作负载。这些容器经过AWS官方优化,可直接在EC2、EKS等云服务上使用,大幅简化了深度学习环境的搭建过程。
近日,AWS发布了Deep Learning Containers项目中针对PyTorch框架的Graviton处理器优化版本v1.18。该版本基于PyTorch 2.4.0构建,专门为AWS Graviton处理器(基于ARM架构)进行了性能优化,适用于EC2实例上的推理场景。
核心特性与技术细节
基础环境配置
该容器镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境。作为推理专用容器,它包含了PyTorch生态系统中用于模型服务的关键组件:
- PyTorch 2.4.0 + CPU版本
- TorchVision 0.19.0
- TorchAudio 2.4.0
- TorchServe 0.12.0模型服务框架
- Torch Model Archiver 0.12.0模型打包工具
关键依赖库版本
容器内预装了深度学习工作流中常用的Python库,并选择了经过验证的稳定版本:
- 数值计算:NumPy 1.26.4、SciPy 1.14.1
- 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
- 开发工具:Cython 3.0.11、Ninja 1.11.1.1
- AWS集成:boto3 1.35.54、awscli 1.35.20
系统级优化
针对Graviton ARM架构,容器内包含了必要的系统库和开发工具链:
- GCC编译器相关库(libgcc-10-dev、libgcc-11-dev)
- C++标准库(libstdc++-10-dev、libstdc++-11-dev)
- 基础开发工具如Emacs编辑器
应用场景与优势
这个专为Graviton处理器优化的PyTorch推理容器特别适合以下场景:
- 成本敏感型推理服务:Graviton实例通常比同级别x86实例更具性价比,结合此优化容器可进一步降低推理成本
- 边缘计算场景:ARM架构的低功耗特性使其适合边缘设备部署
- 批量推理任务:经过优化的PyTorch运行时能够高效处理大批量推理请求
版本管理与兼容性
该容器镜像提供了多个标签别名,方便用户根据不同的版本策略进行引用:
- 精确版本标签:2.4.0-cpu-py311-ubuntu22.04-ec2-v1.18
- 主版本标签:2.4-cpu-py311-ubuntu22.04-ec2-v1
- 简化标签:2.4-cpu-py311-ec2
这种灵活的标签策略既保证了生产环境的稳定性需求,又满足了开发测试环境的便利性。
总结
AWS Deep Learning Containers通过提供这个针对Graviton处理器优化的PyTorch推理容器,进一步丰富了其ARM生态的支持。对于已经在使用Graviton实例的用户,这个容器可以带来即时的性能提升;对于考虑迁移到ARM架构的用户,它提供了可靠的参考实现。随着ARM服务器生态的成熟,这类优化容器将成为降低AI推理成本的重要工具。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1