AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.18版本
2025-07-07 06:42:22作者:庞眉杨Will
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架、依赖库和工具链,帮助开发者快速部署和运行深度学习工作负载。这些容器经过AWS官方优化,可直接在EC2、EKS等云服务上使用,大幅简化了深度学习环境的搭建过程。
近日,AWS发布了Deep Learning Containers项目中针对PyTorch框架的Graviton处理器优化版本v1.18。该版本基于PyTorch 2.4.0构建,专门为AWS Graviton处理器(基于ARM架构)进行了性能优化,适用于EC2实例上的推理场景。
核心特性与技术细节
基础环境配置
该容器镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境。作为推理专用容器,它包含了PyTorch生态系统中用于模型服务的关键组件:
- PyTorch 2.4.0 + CPU版本
- TorchVision 0.19.0
- TorchAudio 2.4.0
- TorchServe 0.12.0模型服务框架
- Torch Model Archiver 0.12.0模型打包工具
关键依赖库版本
容器内预装了深度学习工作流中常用的Python库,并选择了经过验证的稳定版本:
- 数值计算:NumPy 1.26.4、SciPy 1.14.1
- 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
- 开发工具:Cython 3.0.11、Ninja 1.11.1.1
- AWS集成:boto3 1.35.54、awscli 1.35.20
系统级优化
针对Graviton ARM架构,容器内包含了必要的系统库和开发工具链:
- GCC编译器相关库(libgcc-10-dev、libgcc-11-dev)
- C++标准库(libstdc++-10-dev、libstdc++-11-dev)
- 基础开发工具如Emacs编辑器
应用场景与优势
这个专为Graviton处理器优化的PyTorch推理容器特别适合以下场景:
- 成本敏感型推理服务:Graviton实例通常比同级别x86实例更具性价比,结合此优化容器可进一步降低推理成本
- 边缘计算场景:ARM架构的低功耗特性使其适合边缘设备部署
- 批量推理任务:经过优化的PyTorch运行时能够高效处理大批量推理请求
版本管理与兼容性
该容器镜像提供了多个标签别名,方便用户根据不同的版本策略进行引用:
- 精确版本标签:2.4.0-cpu-py311-ubuntu22.04-ec2-v1.18
- 主版本标签:2.4-cpu-py311-ubuntu22.04-ec2-v1
- 简化标签:2.4-cpu-py311-ec2
这种灵活的标签策略既保证了生产环境的稳定性需求,又满足了开发测试环境的便利性。
总结
AWS Deep Learning Containers通过提供这个针对Graviton处理器优化的PyTorch推理容器,进一步丰富了其ARM生态的支持。对于已经在使用Graviton实例的用户,这个容器可以带来即时的性能提升;对于考虑迁移到ARM架构的用户,它提供了可靠的参考实现。随着ARM服务器生态的成熟,这类优化容器将成为降低AI推理成本的重要工具。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0104Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
895
531

Konado是一个对话创建工具,提供多种对话模板以及对话管理器,可以快速创建对话游戏,也可以嵌入各类游戏的对话场景
GDScript
21
13

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
85
4

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
372
387

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
625
60

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
401
377