Grafana Helm Charts中Tempo分布式追踪系统的自动伸缩优化
在分布式追踪系统Grafana Tempo的实际生产部署中,自动伸缩功能对于保证系统稳定性和资源利用率至关重要。本文深入探讨了如何通过修改Grafana Helm Charts来增强Tempo Compactor组件的自动伸缩能力,特别是在多租户环境下的特殊需求。
多租户环境下的自动伸缩挑战
在多租户架构的Grafana Mimir监控系统中,每个租户的数据查询都需要通过特定的HTTP头部(如X-Scope-OrgID)进行身份验证和隔离。这一安全机制给基于Prometheus指标的自动伸缩带来了新的技术挑战。
传统的Prometheus自动伸缩器(KEDA)配置无法直接传递这些必要的认证头部,导致在多租户环境中无法正确获取租户特定的指标数据。这一限制使得Tempo Compactor组件无法根据实际工作负载进行弹性伸缩。
技术解决方案
Grafana社区通过修改tempo-distributed Helm Chart,增加了对自定义HTTP头部的支持。这一改进主要体现在以下几个方面:
-
ScaledObject配置增强:在KEDA的ScaledObject定义中新增了customHeaders字段,允许用户指定需要传递给Prometheus查询的HTTP头部。
-
多租户支持:通过头部认证机制,确保每个租户只能查询到自己的指标数据,符合Mimir的多租户安全模型。
-
灵活的查询配置:支持复杂的PromQL查询语句,可以精确计算Compactor组件待处理块数与实际处理能力的比率。
实现细节
在具体实现上,Helm Chart的values.yaml文件新增了autoscaling配置节,允许用户定义如下内容:
compactor:
autoscaling:
enabled: true
prometheus:
serverAddress: "http://mimir:9090"
threshold: "250"
query: |
sum by (cluster, namespace, tenant) (
tempodb_compaction_outstanding_blocks{container="compactor", namespace=~".*"}
) /
ignoring(tenant) group_left count by (cluster, namespace)(
tempo_build_info{container="compactor", namespace=~".*"}
)
customHeaders:
X-Scope-OrgID: "tenant-123"
这一配置使得KEDA能够正确地向受保护的Mimir端点发送查询请求,获取特定租户的指标数据,并据此做出伸缩决策。
生产环境考量
在实际部署时,运维团队需要注意以下几点:
-
安全性:确保认证头部的安全存储和传输,避免敏感信息泄露。
-
性能监控:建议对自动伸缩过程进行监控,确保伸缩决策的及时性和准确性。
-
阈值调优:需要根据实际工作负载特点调整伸缩阈值,避免过于频繁的伸缩操作。
-
回退机制:考虑配置最小和最大副本数限制,作为自动伸缩的安全边界。
总结
这一改进显著增强了Grafana Tempo在多租户环境下的自动伸缩能力,使得Compactor组件能够更精确地响应不同租户的工作负载变化。通过标准的Helm Chart配置方式,用户可以轻松地在自己的环境中启用这一功能,而无需进行复杂的定制开发。
这种设计模式也为其他需要与多租户监控系统集成的应用提供了有价值的参考,展示了如何在保持安全隔离的同时实现精细化的资源管理。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00