Grafana Helm Charts中Tempo分布式追踪系统的自动伸缩优化
在分布式追踪系统Grafana Tempo的实际生产部署中,自动伸缩功能对于保证系统稳定性和资源利用率至关重要。本文深入探讨了如何通过修改Grafana Helm Charts来增强Tempo Compactor组件的自动伸缩能力,特别是在多租户环境下的特殊需求。
多租户环境下的自动伸缩挑战
在多租户架构的Grafana Mimir监控系统中,每个租户的数据查询都需要通过特定的HTTP头部(如X-Scope-OrgID)进行身份验证和隔离。这一安全机制给基于Prometheus指标的自动伸缩带来了新的技术挑战。
传统的Prometheus自动伸缩器(KEDA)配置无法直接传递这些必要的认证头部,导致在多租户环境中无法正确获取租户特定的指标数据。这一限制使得Tempo Compactor组件无法根据实际工作负载进行弹性伸缩。
技术解决方案
Grafana社区通过修改tempo-distributed Helm Chart,增加了对自定义HTTP头部的支持。这一改进主要体现在以下几个方面:
-
ScaledObject配置增强:在KEDA的ScaledObject定义中新增了customHeaders字段,允许用户指定需要传递给Prometheus查询的HTTP头部。
-
多租户支持:通过头部认证机制,确保每个租户只能查询到自己的指标数据,符合Mimir的多租户安全模型。
-
灵活的查询配置:支持复杂的PromQL查询语句,可以精确计算Compactor组件待处理块数与实际处理能力的比率。
实现细节
在具体实现上,Helm Chart的values.yaml文件新增了autoscaling配置节,允许用户定义如下内容:
compactor:
autoscaling:
enabled: true
prometheus:
serverAddress: "http://mimir:9090"
threshold: "250"
query: |
sum by (cluster, namespace, tenant) (
tempodb_compaction_outstanding_blocks{container="compactor", namespace=~".*"}
) /
ignoring(tenant) group_left count by (cluster, namespace)(
tempo_build_info{container="compactor", namespace=~".*"}
)
customHeaders:
X-Scope-OrgID: "tenant-123"
这一配置使得KEDA能够正确地向受保护的Mimir端点发送查询请求,获取特定租户的指标数据,并据此做出伸缩决策。
生产环境考量
在实际部署时,运维团队需要注意以下几点:
-
安全性:确保认证头部的安全存储和传输,避免敏感信息泄露。
-
性能监控:建议对自动伸缩过程进行监控,确保伸缩决策的及时性和准确性。
-
阈值调优:需要根据实际工作负载特点调整伸缩阈值,避免过于频繁的伸缩操作。
-
回退机制:考虑配置最小和最大副本数限制,作为自动伸缩的安全边界。
总结
这一改进显著增强了Grafana Tempo在多租户环境下的自动伸缩能力,使得Compactor组件能够更精确地响应不同租户的工作负载变化。通过标准的Helm Chart配置方式,用户可以轻松地在自己的环境中启用这一功能,而无需进行复杂的定制开发。
这种设计模式也为其他需要与多租户监控系统集成的应用提供了有价值的参考,展示了如何在保持安全隔离的同时实现精细化的资源管理。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00