NeuralForecast项目中的交叉验证功能解析与使用注意事项
2025-06-24 08:03:57作者:范靓好Udolf
引言
在时间序列预测领域,交叉验证是评估模型性能的重要技术手段。本文将深入分析Nixtla/NeuralForecast项目中cross_validation函数的工作原理,特别是针对测试集处理方式的特殊机制,帮助开发者正确理解和使用这一功能。
交叉验证机制详解
NeuralForecast的cross_validation函数实现了一种特殊的时间序列交叉验证方式。与传统的机器学习交叉验证不同,时间序列数据具有时间依赖性,因此需要特殊的验证方法。
该函数采用滚动窗口预测机制:
- 首先将数据集划分为训练集、验证集和测试集
- 预测时不是一次性预测整个测试集,而是采用滚动窗口方式
- 每次预测一个窗口(大小为h)的数据,然后移动step_size个时间步长
- 每次移动窗口后,使用最新的真实值作为下一窗口预测的输入
这种机制模拟了真实世界的时间序列预测场景,即每次预测都基于最新的可用数据。
常见误区与正确使用方法
许多用户在使用过程中会遇到一个典型问题:当测试集的目标值被置为0时,预测结果质量显著下降。这并非数据泄露问题,而是由以下原因造成:
-
预测窗口大小(h)与测试集大小的关系:当h=1时,模型每次只能预测一个时间点的值,然后使用真实值作为下一个预测的输入。如果测试集目标值被置0,模型将失去连续预测的能力。
-
正确配置方式:若要一次性预测整个测试集,应将h参数设置为测试集的大小。这样模型就能基于训练数据直接预测整个测试序列,而不依赖测试集的中间值。
实际应用建议
-
参数配置:
- 对于短期预测场景,可以使用较小的h值配合滚动预测
- 对于需要完整测试集预测的情况,应将h设置为test_size
-
数据准备:
- 不需要也不应该将测试集目标值置零
- 保持数据的完整性,让交叉验证函数按设计机制工作
-
性能考量:
- 较大的h值会增加内存消耗
- 滚动预测方式(h较小)更接近实时预测场景
技术实现细节
在底层实现上,cross_validation函数通过以下步骤工作:
- 数据划分:按照val_size和test_size参数划分数据集
- 窗口初始化:根据h值确定预测窗口大小
- 滚动预测:在测试集上逐步移动预测窗口
- 结果收集:汇总所有窗口的预测结果
总结
NeuralForecast的交叉验证功能设计考虑了时间序列数据的特性,提供了灵活的时间序列模型评估方式。正确理解其滚动预测机制对于获得可靠的模型评估结果至关重要。开发者应根据实际需求合理配置h参数,既可以利用滚动预测模拟实时场景,也可以进行完整的测试集预测评估。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
580
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
352
仓颉编程语言运行时与标准库。
Cangjie
130
365
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
184
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205