NeuralForecast项目中的交叉验证功能解析与使用注意事项
2025-06-24 10:28:23作者:范靓好Udolf
引言
在时间序列预测领域,交叉验证是评估模型性能的重要技术手段。本文将深入分析Nixtla/NeuralForecast项目中cross_validation函数的工作原理,特别是针对测试集处理方式的特殊机制,帮助开发者正确理解和使用这一功能。
交叉验证机制详解
NeuralForecast的cross_validation函数实现了一种特殊的时间序列交叉验证方式。与传统的机器学习交叉验证不同,时间序列数据具有时间依赖性,因此需要特殊的验证方法。
该函数采用滚动窗口预测机制:
- 首先将数据集划分为训练集、验证集和测试集
- 预测时不是一次性预测整个测试集,而是采用滚动窗口方式
- 每次预测一个窗口(大小为h)的数据,然后移动step_size个时间步长
- 每次移动窗口后,使用最新的真实值作为下一窗口预测的输入
这种机制模拟了真实世界的时间序列预测场景,即每次预测都基于最新的可用数据。
常见误区与正确使用方法
许多用户在使用过程中会遇到一个典型问题:当测试集的目标值被置为0时,预测结果质量显著下降。这并非数据泄露问题,而是由以下原因造成:
-
预测窗口大小(h)与测试集大小的关系:当h=1时,模型每次只能预测一个时间点的值,然后使用真实值作为下一个预测的输入。如果测试集目标值被置0,模型将失去连续预测的能力。
-
正确配置方式:若要一次性预测整个测试集,应将h参数设置为测试集的大小。这样模型就能基于训练数据直接预测整个测试序列,而不依赖测试集的中间值。
实际应用建议
-
参数配置:
- 对于短期预测场景,可以使用较小的h值配合滚动预测
- 对于需要完整测试集预测的情况,应将h设置为test_size
-
数据准备:
- 不需要也不应该将测试集目标值置零
- 保持数据的完整性,让交叉验证函数按设计机制工作
-
性能考量:
- 较大的h值会增加内存消耗
- 滚动预测方式(h较小)更接近实时预测场景
技术实现细节
在底层实现上,cross_validation函数通过以下步骤工作:
- 数据划分:按照val_size和test_size参数划分数据集
- 窗口初始化:根据h值确定预测窗口大小
- 滚动预测:在测试集上逐步移动预测窗口
- 结果收集:汇总所有窗口的预测结果
总结
NeuralForecast的交叉验证功能设计考虑了时间序列数据的特性,提供了灵活的时间序列模型评估方式。正确理解其滚动预测机制对于获得可靠的模型评估结果至关重要。开发者应根据实际需求合理配置h参数,既可以利用滚动预测模拟实时场景,也可以进行完整的测试集预测评估。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492