NeuralForecast项目中NHITS模型test_size参数的正确使用方法
2025-06-24 22:29:47作者:郁楠烈Hubert
在时间序列预测领域,Nixtla团队开发的NeuralForecast库因其高效的神经网络模型而广受欢迎。本文将深入探讨该库中NHITS模型的一个常见使用误区,帮助开发者正确设置验证集和测试集参数。
参数误解现象分析
许多开发者在阅读NHITS模型文档时,会注意到fit方法似乎支持test_size参数。然而在实际应用中,直接使用该参数会导致错误提示"unexpected keyword argument 'test_size'"。
这种现象源于对模型训练流程的误解。实际上,NeuralForecast的fit方法设计理念是专注于模型训练和验证过程,而非测试阶段。测试集的评估应当放在训练完成后的预测阶段进行。
正确参数配置方案
NeuralForecast的fit方法确实提供了val_size参数用于设置验证集大小。验证集在训练过程中主要用于:
- 监控模型在未见数据上的表现
- 实现早停机制防止过拟合
- 进行超参数调优
对于测试集的设置,开发者应当采用以下两种推荐方式之一:
方法一:手动划分数据集
最直接的方式是在调用fit方法前,将原始数据集明确划分为训练集和测试集:
# 假设原始数据有2000个时间点
train_df = df.iloc[:1257] # 前1257个点作为训练集
test_df = df.iloc[1257:] # 剩余743个点作为测试集
# 仅使用训练集进行模型训练
fcst.fit(train_df, val_size=200) # 从训练集中再划分200个点作为验证集
# 训练完成后对测试集进行预测
predictions = fcst.predict(test_df)
方法二:使用交叉验证
对于需要更严格评估的场景,可以使用库提供的交叉验证功能:
from neuralforecast.utils import cross_validation
cv_results = cross_validation(
df=full_dataset,
models=[model],
val_size=200,
test_size=743,
n_windows=3 # 进行3次交叉验证
)
参数选择建议
- 验证集大小:通常设置为总数据量的10-20%,对于长期预测任务可适当增大
- 测试集大小:应当等于或大于预测步长h,确保评估的可靠性
- 数据划分顺序:保持时间序列的连续性,切勿随机打乱时间顺序
模型训练最佳实践
- 监控验证集损失变化,合理设置早停耐心值
- 对于大规模数据,适当减小
batch_size以避免内存溢出 - 使用GPU加速时可启用混合精度训练提升效率
- 考虑使用学习率调度器优化训练过程
通过正确理解NeuralForecast的设计理念和参数设置逻辑,开发者可以更高效地利用NHITS等先进模型解决实际时间序列预测问题。记住,测试集的评估应当作为模型开发流程的独立环节,而非训练过程的一部分。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120