NeuralForecast项目中NHITS模型test_size参数的正确使用方法
2025-06-24 07:49:50作者:郁楠烈Hubert
在时间序列预测领域,Nixtla团队开发的NeuralForecast库因其高效的神经网络模型而广受欢迎。本文将深入探讨该库中NHITS模型的一个常见使用误区,帮助开发者正确设置验证集和测试集参数。
参数误解现象分析
许多开发者在阅读NHITS模型文档时,会注意到fit方法似乎支持test_size参数。然而在实际应用中,直接使用该参数会导致错误提示"unexpected keyword argument 'test_size'"。
这种现象源于对模型训练流程的误解。实际上,NeuralForecast的fit方法设计理念是专注于模型训练和验证过程,而非测试阶段。测试集的评估应当放在训练完成后的预测阶段进行。
正确参数配置方案
NeuralForecast的fit方法确实提供了val_size参数用于设置验证集大小。验证集在训练过程中主要用于:
- 监控模型在未见数据上的表现
- 实现早停机制防止过拟合
- 进行超参数调优
对于测试集的设置,开发者应当采用以下两种推荐方式之一:
方法一:手动划分数据集
最直接的方式是在调用fit方法前,将原始数据集明确划分为训练集和测试集:
# 假设原始数据有2000个时间点
train_df = df.iloc[:1257] # 前1257个点作为训练集
test_df = df.iloc[1257:] # 剩余743个点作为测试集
# 仅使用训练集进行模型训练
fcst.fit(train_df, val_size=200) # 从训练集中再划分200个点作为验证集
# 训练完成后对测试集进行预测
predictions = fcst.predict(test_df)
方法二:使用交叉验证
对于需要更严格评估的场景,可以使用库提供的交叉验证功能:
from neuralforecast.utils import cross_validation
cv_results = cross_validation(
df=full_dataset,
models=[model],
val_size=200,
test_size=743,
n_windows=3 # 进行3次交叉验证
)
参数选择建议
- 验证集大小:通常设置为总数据量的10-20%,对于长期预测任务可适当增大
- 测试集大小:应当等于或大于预测步长h,确保评估的可靠性
- 数据划分顺序:保持时间序列的连续性,切勿随机打乱时间顺序
模型训练最佳实践
- 监控验证集损失变化,合理设置早停耐心值
- 对于大规模数据,适当减小
batch_size以避免内存溢出 - 使用GPU加速时可启用混合精度训练提升效率
- 考虑使用学习率调度器优化训练过程
通过正确理解NeuralForecast的设计理念和参数设置逻辑,开发者可以更高效地利用NHITS等先进模型解决实际时间序列预测问题。记住,测试集的评估应当作为模型开发流程的独立环节,而非训练过程的一部分。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
631
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
110
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
211