NeuralForecast项目中NHITS模型test_size参数的正确使用方法
2025-06-24 20:34:21作者:郁楠烈Hubert
在时间序列预测领域,Nixtla团队开发的NeuralForecast库因其高效的神经网络模型而广受欢迎。本文将深入探讨该库中NHITS模型的一个常见使用误区,帮助开发者正确设置验证集和测试集参数。
参数误解现象分析
许多开发者在阅读NHITS模型文档时,会注意到fit方法似乎支持test_size参数。然而在实际应用中,直接使用该参数会导致错误提示"unexpected keyword argument 'test_size'"。
这种现象源于对模型训练流程的误解。实际上,NeuralForecast的fit方法设计理念是专注于模型训练和验证过程,而非测试阶段。测试集的评估应当放在训练完成后的预测阶段进行。
正确参数配置方案
NeuralForecast的fit方法确实提供了val_size参数用于设置验证集大小。验证集在训练过程中主要用于:
- 监控模型在未见数据上的表现
- 实现早停机制防止过拟合
- 进行超参数调优
对于测试集的设置,开发者应当采用以下两种推荐方式之一:
方法一:手动划分数据集
最直接的方式是在调用fit方法前,将原始数据集明确划分为训练集和测试集:
# 假设原始数据有2000个时间点
train_df = df.iloc[:1257] # 前1257个点作为训练集
test_df = df.iloc[1257:] # 剩余743个点作为测试集
# 仅使用训练集进行模型训练
fcst.fit(train_df, val_size=200) # 从训练集中再划分200个点作为验证集
# 训练完成后对测试集进行预测
predictions = fcst.predict(test_df)
方法二:使用交叉验证
对于需要更严格评估的场景,可以使用库提供的交叉验证功能:
from neuralforecast.utils import cross_validation
cv_results = cross_validation(
df=full_dataset,
models=[model],
val_size=200,
test_size=743,
n_windows=3 # 进行3次交叉验证
)
参数选择建议
- 验证集大小:通常设置为总数据量的10-20%,对于长期预测任务可适当增大
- 测试集大小:应当等于或大于预测步长h,确保评估的可靠性
- 数据划分顺序:保持时间序列的连续性,切勿随机打乱时间顺序
模型训练最佳实践
- 监控验证集损失变化,合理设置早停耐心值
- 对于大规模数据,适当减小
batch_size以避免内存溢出 - 使用GPU加速时可启用混合精度训练提升效率
- 考虑使用学习率调度器优化训练过程
通过正确理解NeuralForecast的设计理念和参数设置逻辑,开发者可以更高效地利用NHITS等先进模型解决实际时间序列预测问题。记住,测试集的评估应当作为模型开发流程的独立环节,而非训练过程的一部分。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1