Comet-LLM在线评估功能增强:基于标签的规则过滤机制解析
2025-06-01 05:56:13作者:卓艾滢Kingsley
背景与需求场景
在大型语言模型(LLM)的应用开发过程中,开发者经常需要针对不同业务链路的输出结果进行差异化评估。以Comet-LLM项目为例,用户在实际使用中会遇到这样的典型场景:
- 对话总结链(Summary Chain)和问答链(Q&A Chain)使用不同的标签体系
- 不同业务链需要评估的指标维度存在差异(如问答链需要严格检测幻觉,而总结链则不需要)
- 现有评估规则会全局应用于所有跟踪数据,缺乏细粒度控制能力
技术方案演进
Comet-LLM团队在收到用户反馈后,对在线评估功能进行了架构升级:
-
初期实现
原始版本支持创建评估规则和字段映射,但规则会应用于所有跟踪数据。这种"一刀切"的方式在复杂业务场景下会导致:- 不必要的评估开销
- 指标结果混杂难以分析
- 无法针对特定业务链路优化规则
-
标签过滤方案
技术团队提出通过span标签进行规则过滤的解决方案:- 在创建评估规则时增加标签选择器
- 运行时自动匹配包含指定标签的span
- 支持多标签AND/OR逻辑组合
# 伪代码示例 rule = HallucinationRule( name="qa-hallucination-check", required_tags=["chain:qa", "env:production"] ) -
扩展为通用过滤体系
在方案讨论过程中,团队进一步将设计扩展为更通用的过滤框架(合并入1913号需求):- 支持基于标签、元数据、时间范围等多维度过滤
- 可组合的过滤条件表达式
- 动态过滤条件注入
实现细节与技术价值
该功能的实现涉及以下关键技术点:
1. 规则引擎增强
- 在规则执行前增加过滤预处理层
- 采用惰性求值策略避免不必要的计算
- 过滤器编译为AST优化执行效率
2. 上下文感知评估
通过将评估规则与业务上下文(标签)绑定,实现了:
- 更精准的模型表现分析
- 按业务维度划分的评估指标
- 针对性的规则优化能力
3. 性能优化
- 使用Bloom Filter加速标签匹配
- 规则条件预编译缓存
- 分布式评估任务调度
最佳实践建议
基于该功能,推荐以下使用模式:
-
业务维度划分
# 为不同业务链设置专属标签 with tracer.trace("qa_chain", tags=["business:qa"]): llm_response = qa_chain.run(question) # 配置专属评估规则 qa_rules = RuleSet( HallucinationRule(), RelevanceRule(), tags_filter=["business:qa"] ) -
环境差异化配置
# 生产环境特殊检测规则 prod_rules = RuleSet( ToxicityFilterRule(threshold=0.9), PIIRedactionRule(), tags_filter=["env:production"] ) -
渐进式评估策略
- 新功能初期使用宽松规则+特定标签
- 稳定后逐步扩大评估范围
- 通过标签对比新旧版本表现
未来演进方向
该功能为Comet-LLM的评估体系奠定了基础架构,后续可扩展:
- 自动化规则推荐系统
- 基于评估结果的标签自动生成
- 跨标签组合分析功能
- 实时规则效果监控看板
通过这种精细化的评估控制机制,开发者能够更高效地优化LLM应用在不同业务场景下的表现,同时降低不必要的计算开销。该设计也体现了Comet-LLM在可观测性领域的深度思考,为复杂LLM应用的治理提供了专业级解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1