IREE项目中Llama 8b fp16模型编译失败问题分析
2025-06-26 06:40:12作者:管翌锬
问题背景
在IREE深度学习编译器项目中,开发人员发现了一个关于Llama 8b fp16模型编译失败的问题。该模型在PR#20320合并前能够正常编译,但在合并后出现了共享内存超限的错误。
错误现象
编译过程中报错显示:
failed to translate executables
random_llama_8b_f16.mlir:18362:15: error: 'func.func' op uses 286720 bytes of shared memory; exceeded the limit of 65536 bytes
错误发生在处理torch.aten._scaled_dot_product_flash_attention_for_cpu操作时,共享内存使用量超过了硬件限制(286720字节 vs 65536字节限制)。
技术分析
问题根源
通过分析,发现问题出在IREE的维度折叠(Collapse Dimensions)优化阶段。这个优化本意是减少张量维度以提升性能,但在特定情况下会导致共享内存使用量激增。
关键发现
- 问题主要出现在注意力机制(attention)的实现部分
- 维度折叠优化在处理某些张量布局时会产生中间展开操作(expand_shape)
- 这些中间操作会不必要地增加共享内存使用量
- FP8模型不受影响,但FP16模型会出现问题
复现方法
开发人员提供了两个测试用例来复现问题:
- 第一种情况会产生中间展开操作
- 第二种情况则不会产生这种操作
这表明维度折叠优化在某些情况下可能过于激进,导致不必要的内存开销。
解决方案
目前采取的临时解决方案是:
- 在注意力机制中禁用rope融合(rope fusion)
- 等待更彻底的修复方案
技术细节
问题的核心在于IREE的维度折叠优化算法在处理特定张量布局时的行为不一致。对于某些输入模式,它会生成包含额外展开操作的中间表示,这会显著增加共享内存需求。
开发人员通过分析IR(中间表示)发现,优化后的代码在某些情况下会:
- 先折叠张量维度
- 然后在中间计算中又展开这些维度
- 最后再次折叠
这种不必要的展开-折叠循环是导致内存使用量激增的主要原因。
总结
这个问题展示了编译器优化中一个典型的挑战:看似无害的优化可能在特定情况下导致意外的副作用。在IREE这样的深度学习编译器中,内存使用优化尤为重要,因为深度学习模型通常对内存带宽和容量非常敏感。
开发团队正在研究更稳健的维度折叠算法,以避免在不必要的情况下引入额外的内存开销。对于用户来说,目前的建议是暂时禁用相关优化或使用FP8精度来规避这个问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246