Machine Learning for Kids 项目教程
1. 项目介绍
Machine Learning for Kids 是一个面向儿童的机器学习工具,旨在通过提供一个易于使用的引导环境,帮助儿童训练简单的机器学习模型,并将其应用于实际项目中。该项目由IBM开发,源代码托管在GitHub上,地址为:https://github.com/IBM/taxinomitis。
该项目的主要功能包括:
- 训练文本分类、数字分类和图像识别的机器学习模型。
- 将训练好的模型集成到Scratch(一个广泛使用的教育编程平台)中,使儿童能够创建项目和构建游戏。
- 提供项目工作表,指导学生如何训练模型并将其应用于实际项目。
2. 项目快速启动
2.1 克隆项目
首先,你需要克隆项目到本地:
git clone https://github.com/IBM/taxinomitis.git
cd taxinomitis
2.2 安装依赖
安装项目所需的依赖:
npm install
2.3 启动项目
启动项目:
npm start
项目启动后,你可以在浏览器中访问 http://localhost:3000 来查看运行效果。
3. 应用案例和最佳实践
3.1 应用案例
案例1:文本分类
儿童可以使用该项目训练一个文本分类模型,例如识别不同的情绪(如快乐、悲伤、愤怒等)。训练完成后,他们可以将模型集成到Scratch中,创建一个情绪识别游戏。
案例2:图像识别
儿童可以训练一个图像识别模型,例如识别不同的动物。训练完成后,他们可以将模型集成到Scratch中,创建一个动物识别游戏。
3.2 最佳实践
- 数据收集:确保收集足够多样化的数据,以提高模型的准确性。
- 模型评估:在训练完成后,使用测试数据集评估模型的性能,并根据需要进行调整。
- 项目文档:使用项目工作表指导学生完成整个过程,确保他们理解每个步骤。
4. 典型生态项目
4.1 Scratch
Scratch 是一个广泛使用的教育编程平台,允许儿童通过拖放代码块来创建项目。Machine Learning for Kids 项目与Scratch集成,使儿童能够将训练好的机器学习模型应用于Scratch项目中。
4.2 TensorFlow.js
TensorFlow.js 是一个用于在浏览器中运行机器学习模型的JavaScript库。Machine Learning for Kids 项目使用TensorFlow.js来训练和运行模型。
4.3 IBM Watson
IBM Watson 是一个人工智能平台,提供各种AI服务。Machine Learning for Kids 项目利用IBM Watson的服务来增强其功能。
通过以上步骤,你可以快速启动并使用Machine Learning for Kids项目,并了解其应用案例和生态项目。希望这个教程对你有所帮助!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00