Azure Machine Learning 开源项目教程
2024-09-19 02:15:36作者:魏侃纯Zoe
1. 项目介绍
项目概述
mslearn-azure-ml 是微软学习路径中探索 Azure Machine Learning 的实践实验室集合。该项目旨在通过一系列动手实验,帮助学习者掌握 Azure Machine Learning 的使用,包括数据准备、模型训练、模型部署等各个环节。
项目目标
- 提供一个全面的 Azure Machine Learning 实践环境。
- 通过实际操作加深对 Azure Machine Learning 的理解。
- 支持微软学习路径中的相关课程。
2. 项目快速启动
环境准备
-
安装 Azure CLI: 首先需要安装 Azure CLI,用于管理 Azure 资源。
curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash -
登录 Azure: 使用 Azure CLI 登录到你的 Azure 账户。
az login -
创建 Azure Machine Learning 工作区: 使用以下命令创建一个新的 Azure Machine Learning 工作区。
az ml workspace create -n <workspace-name> -g <resource-group>
快速启动代码示例
以下是一个简单的 Python 脚本,用于在 Azure Machine Learning 中训练一个线性回归模型。
from azureml.core import Workspace, Experiment, ScriptRunConfig
# 连接到 Azure Machine Learning 工作区
ws = Workspace.from_config()
# 创建一个实验
experiment = Experiment(workspace=ws, name='quick-start-experiment')
# 配置脚本运行
config = ScriptRunConfig(source_directory='.', script='train.py')
# 提交实验
run = experiment.submit(config)
# 等待运行完成
run.wait_for_completion(show_output=True)
3. 应用案例和最佳实践
应用案例
- 金融行业: 使用 Azure Machine Learning 进行信用评分模型的训练和部署。
- 医疗保健: 利用 Azure Machine Learning 进行疾病预测和患者风险评估。
- 零售业: 通过 Azure Machine Learning 实现个性化推荐系统。
最佳实践
- 数据管理: 确保数据的质量和一致性,使用 Azure Data Factory 进行数据预处理。
- 模型监控: 使用 Azure Monitor 监控模型的性能和准确性。
- 版本控制: 使用 Azure DevOps 进行代码和模型的版本控制。
4. 典型生态项目
相关项目
- Azure Data Factory: 用于数据集成和预处理。
- Azure Databricks: 提供一个交互式的 Spark 环境,用于大数据处理。
- Azure DevOps: 用于持续集成和持续部署 (CI/CD)。
集成示例
以下是一个简单的集成示例,展示如何使用 Azure Data Factory 和 Azure Machine Learning 进行数据预处理和模型训练。
- 创建 Azure Data Factory 管道: 使用 Azure Data Factory 进行数据清洗和转换。
- 触发 Azure Machine Learning 实验: 在数据预处理完成后,自动触发 Azure Machine Learning 实验进行模型训练。
通过这些模块的学习和实践,你将能够全面掌握 Azure Machine Learning 的使用,并能够在实际项目中应用这些知识。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869