AsyncDiff: 异步去噪加速扩散模型的实现
2024-09-22 22:32:57作者:昌雅子Ethen
1. 项目介绍
AsyncDiff 是一个通用且即插即用的扩散模型加速方案,它通过在多个设备上实现模型并行性来提高去噪效率。该方案通过将复杂的噪声预测模型分解为多个组件,并将每个组件分配给不同的设备,从而打破组件间的依赖链。利用连续扩散步骤中隐藏状态的高相似性,将传统的顺序去噪转变为异步过程,从而显著减少推理延迟,同时最小化对生成质量的影响。
2. 项目快速启动
在开始之前,请确保您的系统满足以下要求:
- NVIDIA GPU + CUDA >= 12.0 和相应的 CuDNN
创建环境
conda create -n asyncdiff python=3.10
conda activate asyncdiff
pip install -r requirements.txt
使用示例
以下是一个使用 Stable Diffusion pipeline 的示例,以启用扩散模型的异步并行推理:
import torch
from diffusers import StableDiffusionPipeline
from asyncdiff.async_sd import AsyncDiff
# 加载预训练的 Stable Diffusion 模型
pipeline = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1",
torch_dtype=torch.float16,
use_safetensors=True,
low_cpu_mem_usage=True
)
# 初始化 AsyncDiff
async_diff = AsyncDiff(pipeline, model_n=2, stride=1, time_shift=False)
async_diff.reset_state(warm_up=1)
# 生成图像
image = pipeline("<prompts>")[0]
# 如果是分布式训练的第一节点,保存图像
if dist.get_rank() == 0:
image.save("output.jpg")
您可以替换 pipeline
为其他版本的 Stable Diffusion pipeline,如 SD 2.1、SD 1.5、SDXL 或 SVD。
3. 应用案例和最佳实践
AsyncDiff 支持多种扩散模型的加速推理,以下是一些案例:
- 加速 Stable Diffusion XL 推理:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node=4 --run-path examples/run_sdxl.py
- 加速 Stable Diffusion 2.1 或 1.5 推理:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node=4 --run-path examples/run_sd.py
- 加速 Stable Diffusion 3 Medium 推理:
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.run --nproc_per_node=2 --run-path examples/run_sd3.py
更多案例和最佳实践可以在项目的 examples 目录中找到。
4. 典型生态项目
AsyncDiff 的生态项目包括但不限于以下几种:
- Stable Diffusion 2.1、1.5、3 Medium、SDXL、SDXL Inpainting
- ControlNet、SD Upscaler、AnimateDiff、Stable Video Diffusion
这些项目都可以在 AsyncDiff 的官方仓库中找到相应的脚本和示例。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K