AsyncDiff: 异步去噪加速扩散模型的实现
2024-09-22 13:25:18作者:昌雅子Ethen
1. 项目介绍
AsyncDiff 是一个通用且即插即用的扩散模型加速方案,它通过在多个设备上实现模型并行性来提高去噪效率。该方案通过将复杂的噪声预测模型分解为多个组件,并将每个组件分配给不同的设备,从而打破组件间的依赖链。利用连续扩散步骤中隐藏状态的高相似性,将传统的顺序去噪转变为异步过程,从而显著减少推理延迟,同时最小化对生成质量的影响。
2. 项目快速启动
在开始之前,请确保您的系统满足以下要求:
- NVIDIA GPU + CUDA >= 12.0 和相应的 CuDNN
创建环境
conda create -n asyncdiff python=3.10
conda activate asyncdiff
pip install -r requirements.txt
使用示例
以下是一个使用 Stable Diffusion pipeline 的示例,以启用扩散模型的异步并行推理:
import torch
from diffusers import StableDiffusionPipeline
from asyncdiff.async_sd import AsyncDiff
# 加载预训练的 Stable Diffusion 模型
pipeline = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1",
torch_dtype=torch.float16,
use_safetensors=True,
low_cpu_mem_usage=True
)
# 初始化 AsyncDiff
async_diff = AsyncDiff(pipeline, model_n=2, stride=1, time_shift=False)
async_diff.reset_state(warm_up=1)
# 生成图像
image = pipeline("<prompts>")[0]
# 如果是分布式训练的第一节点,保存图像
if dist.get_rank() == 0:
image.save("output.jpg")
您可以替换 pipeline 为其他版本的 Stable Diffusion pipeline,如 SD 2.1、SD 1.5、SDXL 或 SVD。
3. 应用案例和最佳实践
AsyncDiff 支持多种扩散模型的加速推理,以下是一些案例:
- 加速 Stable Diffusion XL 推理:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node=4 --run-path examples/run_sdxl.py
- 加速 Stable Diffusion 2.1 或 1.5 推理:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node=4 --run-path examples/run_sd.py
- 加速 Stable Diffusion 3 Medium 推理:
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.run --nproc_per_node=2 --run-path examples/run_sd3.py
更多案例和最佳实践可以在项目的 examples 目录中找到。
4. 典型生态项目
AsyncDiff 的生态项目包括但不限于以下几种:
- Stable Diffusion 2.1、1.5、3 Medium、SDXL、SDXL Inpainting
- ControlNet、SD Upscaler、AnimateDiff、Stable Video Diffusion
这些项目都可以在 AsyncDiff 的官方仓库中找到相应的脚本和示例。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355