MLPerf训练基准中的图神经网络数据集处理解析
2025-07-09 11:21:39作者:平淮齐Percy
引言
在MLPerf训练基准的图神经网络(GNN)实现中,数据集预处理是一个关键环节。本文将深入分析其中关于边(edge)处理的实现细节,帮助开发者理解其设计原理和实现方式。
边处理的基本流程
MLPerf GNN实现中对图的边处理遵循以下步骤:
-
自环处理:首先移除图中所有的自环边,然后再统一添加自环边。这种看似矛盾的操作实际上确保了图中每个节点都有且仅有一个自环边。
-
双向边构建:在原始有向图的基础上,为每条边添加其反向边,从而构建一个对称的邻接关系。
技术实现细节
以示例数据说明处理过程:
原始边数据:
[0, 1, 2] # 源节点
[1, 2, 3] # 目标节点
-
自环处理阶段:
- 先执行
remove_self_loops()移除所有自环边 - 再执行
add_self_loops()为每个节点添加自环边 - 处理后结果:
[0, 1, 2, 0, 1, 2, 3] # 源节点 [1, 2, 3, 0, 1, 2, 3] # 目标节点
- 先执行
-
反向边添加阶段:
- 创建反向边:
[1, 2, 3, 0, 1, 2, 3] # 原目标节点变为源节点 [0, 1, 2, 0, 1, 2, 3] # 原源节点变为目标节点 - 最终合并结果:
[1,2,3,0,1,2,3,0,1,2,0,1,2,3] # 合并后的源节点 [0,1,2,0,1,2,3,1,2,3,0,1,2,3] # 合并后的目标节点
- 创建反向边:
关键设计考量
-
顺序无关性:虽然参考实现中使用了特定顺序的拼接方式(
torch.cat([cites_edge[1,:], cites_edge[0,:])),但实际上边的顺序不会影响最终结果。因为在后续的COO(坐标格式)到CSC(压缩稀疏列)格式转换过程中,边会被重新排序。 -
图拓扑一致性:MLPerf基准只要求保持与参考实现相同的边数量和图拓扑结构,即确保每对节点间的连接关系相同,而不严格要求边的存储顺序。
-
性能考量:这种处理方式确保了:
- 每个节点都有自环连接
- 图的邻接关系是对称的
- 适合后续的稀疏矩阵运算
实际应用建议
在实际实现中,开发者可以:
- 保持与参考实现完全一致的边处理逻辑以确保合规性
- 或者采用更符合自身框架特性的实现方式,只要保证:
- 最终图的拓扑结构相同
- 自环边的处理方式一致
- 双向边的添加完整
这种灵活性使得不同深度学习框架可以基于自身特点进行优化,同时保持与基准测试的一致性。
结论
MLPerf GNN实现中的边处理设计体现了在严格基准测试要求下的合理灵活性。理解这一处理流程不仅有助于正确实现基准测试,也为开发者设计自己的图数据处理管道提供了参考。关键在于保持图的拓扑等价性,而非边存储的具体顺序。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19