LLaMA-Factory项目中关于微调后tokenizer词表异常问题的分析与解决
在LLaMA-Factory项目使用过程中,用户报告了一个关于模型微调后tokenizer词表出现异常token的问题。本文将深入分析该问题的成因,并提供解决方案。
问题现象
当用户使用LLaMA-Factory的examples/train_qlora/llama3_lora_sft_otfq.yaml配置文件对模型进行微调后,发现生成的tokenizer.json文件中多出了一个名为"<|eom_id|>"的特殊token。这个token原本并不存在于原始LLaMA3模型的词表中,而是LLaMA3.1版本才引入的特殊标记。
技术背景
在大型语言模型的微调过程中,tokenizer的处理是一个关键环节。tokenizer负责将文本转换为模型可以理解的token ID序列。正常情况下,微调过程不应该改变tokenizer的基本结构,特别是词表内容。
问题分析
经过技术分析,这个问题可能源于以下几个原因:
- 配置文件可能默认添加了一些特殊token
- 微调过程中可能错误地修改了tokenizer配置
- 预处理阶段可能引入了额外的特殊标记
特别值得注意的是,"<|eom_id|>"是LLaMA3.1版本中引入的"End of Message"标记,用于标识消息结束。如果在LLAAM3.0模型上错误地添加了这个标记,可能会导致模型行为异常。
解决方案
对于遇到此问题的用户,可以采用以下解决方案:
-
替换tokenizer:最简单的方法是使用原始模型的tokenizer直接替换微调后生成的tokenizer文件。这样可以确保词表与原始模型完全一致。
-
检查配置文件:仔细检查微调配置文件中关于tokenizer的设置,确保没有意外添加特殊token的选项。
-
手动编辑tokenizer:如果熟悉tokenizer结构,可以直接编辑生成的tokenizer.json文件,删除多余的token条目。
最佳实践建议
为了避免类似问题,建议用户在微调前:
- 备份原始tokenizer文件
- 仔细检查配置文件中的tokenizer相关参数
- 在测试环境中先进行小规模试验
- 对比微调前后的tokenizer差异
总结
LLaMA-Factory作为一个强大的模型微调框架,在使用过程中可能会遇到各种配置相关的问题。理解tokenizer的工作原理和正确处理特殊标记,是确保模型微调成功的关键因素之一。遇到类似问题时,保持原始tokenizer的完整性通常是解决问题的有效方法。
对于更复杂的微调需求,建议用户深入了解tokenizer的内部机制,以便更好地控制和定制微调过程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00