LLaMA-Factory项目中关于微调后tokenizer词表异常问题的分析与解决
在LLaMA-Factory项目使用过程中,用户报告了一个关于模型微调后tokenizer词表出现异常token的问题。本文将深入分析该问题的成因,并提供解决方案。
问题现象
当用户使用LLaMA-Factory的examples/train_qlora/llama3_lora_sft_otfq.yaml配置文件对模型进行微调后,发现生成的tokenizer.json文件中多出了一个名为"<|eom_id|>"的特殊token。这个token原本并不存在于原始LLaMA3模型的词表中,而是LLaMA3.1版本才引入的特殊标记。
技术背景
在大型语言模型的微调过程中,tokenizer的处理是一个关键环节。tokenizer负责将文本转换为模型可以理解的token ID序列。正常情况下,微调过程不应该改变tokenizer的基本结构,特别是词表内容。
问题分析
经过技术分析,这个问题可能源于以下几个原因:
- 配置文件可能默认添加了一些特殊token
- 微调过程中可能错误地修改了tokenizer配置
- 预处理阶段可能引入了额外的特殊标记
特别值得注意的是,"<|eom_id|>"是LLaMA3.1版本中引入的"End of Message"标记,用于标识消息结束。如果在LLAAM3.0模型上错误地添加了这个标记,可能会导致模型行为异常。
解决方案
对于遇到此问题的用户,可以采用以下解决方案:
-
替换tokenizer:最简单的方法是使用原始模型的tokenizer直接替换微调后生成的tokenizer文件。这样可以确保词表与原始模型完全一致。
-
检查配置文件:仔细检查微调配置文件中关于tokenizer的设置,确保没有意外添加特殊token的选项。
-
手动编辑tokenizer:如果熟悉tokenizer结构,可以直接编辑生成的tokenizer.json文件,删除多余的token条目。
最佳实践建议
为了避免类似问题,建议用户在微调前:
- 备份原始tokenizer文件
- 仔细检查配置文件中的tokenizer相关参数
- 在测试环境中先进行小规模试验
- 对比微调前后的tokenizer差异
总结
LLaMA-Factory作为一个强大的模型微调框架,在使用过程中可能会遇到各种配置相关的问题。理解tokenizer的工作原理和正确处理特殊标记,是确保模型微调成功的关键因素之一。遇到类似问题时,保持原始tokenizer的完整性通常是解决问题的有效方法。
对于更复杂的微调需求,建议用户深入了解tokenizer的内部机制,以便更好地控制和定制微调过程。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









