Hello LTR 项目教程
1. 项目介绍
Hello LTR 是一个开源项目,旨在通过 Jupyter 笔记本演示如何在 Elasticsearch、Solr 或 OpenSearch 中使用 Learning to Rank(LTR)技术。LTR 是一种将机器学习应用于搜索排序的技术,通过训练模型来提高搜索结果的相关性。
该项目的主要目标是展示在 Elasticsearch、Solr 或 OpenSearch 中使用 LTR 的所有步骤。它提供了两种运行模式:一种是使用 Docker 容器运行 Jupyter 笔记本和搜索引擎,另一种是本地开发笔记本并连接到 Docker 中运行的搜索引擎。
2. 项目快速启动
2.1 使用 Docker 快速启动
如果你只是想快速体验 LTR,可以使用 Docker 来启动项目。以下是具体步骤:
-
克隆项目仓库:
git clone https://github.com/o19s/hello-ltr.git cd hello-ltr -
启动 Docker 容器:
docker-compose up -
检查各个服务的运行状态:
- Solr:
http://localhost:8983 - Elasticsearch:
http://localhost:9200 - Kibana:
http://localhost:5601 - OpenSearch:
http://localhost:9201 - OpenSearch Dashboards:
http://localhost:5602 - Jupyter:
http://localhost:8888
- Solr:
2.2 本地开发模式
如果你想进行更深入的开发,可以采用本地开发模式。以下是具体步骤:
-
启动搜索引擎(以 Solr 为例):
cd notebooks/solr docker-compose up -
设置 Python 环境:
python3 -m venv venv source venv/bin/activate pip install -r requirements.txt -
启动 Jupyter 笔记本:
jupyter notebook -
打开浏览器,访问
http://localhost:8888,选择相应的笔记本进行开发。
3. 应用案例和最佳实践
3.1 应用案例
Hello LTR 项目可以应用于各种需要提高搜索相关性的场景,例如:
- 电子商务平台:通过 LTR 技术提高商品搜索结果的相关性,提升用户购物体验。
- 文档搜索系统:在企业内部文档搜索系统中应用 LTR,提高文档检索的准确性。
- 新闻推荐系统:通过 LTR 技术优化新闻推荐算法,提高用户对推荐内容的满意度。
3.2 最佳实践
- 数据准备:确保训练数据的质量和多样性,以提高模型的泛化能力。
- 特征工程:精心设计特征,确保特征能够准确反映文档与查询的相关性。
- 模型选择:根据具体需求选择合适的模型,如线性模型、树模型或深度学习模型。
- 持续优化:定期更新模型,根据用户反馈和数据变化进行调整。
4. 典型生态项目
4.1 Elasticsearch Learning to Rank
Elasticsearch Learning to Rank 是一个插件,提供了在 Elasticsearch 中训练和使用 LTR 模型的工具。它支持多种模型格式,并提供了丰富的 API 用于特征管理和模型上传。
4.2 Solr Learning to Rank
Solr 也支持 LTR 技术,通过插件或扩展可以实现类似的功能。Solr 的 LTR 实现与 Elasticsearch 类似,但具体配置和使用方式有所不同。
4.3 OpenSearch Learning to Rank
OpenSearch 是 Elasticsearch 的一个分支,同样支持 LTR 技术。OpenSearch 的 LTR 实现与 Elasticsearch 类似,但可能会有一些特定的优化和改进。
通过这些生态项目,你可以更深入地理解和应用 LTR 技术,提升搜索系统的性能和用户体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00