Elasticsearch Learning to Rank 项目教程
2024-09-15 04:30:15作者:何将鹤
1. 项目介绍
Elasticsearch Learning to Rank(简称 Elasticsearch LTR)是一个开源插件,旨在通过机器学习技术提升Elasticsearch中的搜索相关性。该插件允许用户训练和使用排序模型,以优化搜索结果的排名。Elasticsearch LTR 的核心思想是利用已有的搜索数据和用户反馈来训练模型,从而自动调整搜索结果的排序,使其更符合用户的期望。
2. 项目快速启动
安装
首先,确保你已经安装了Elasticsearch。然后,你可以通过以下命令安装Elasticsearch LTR插件:
./bin/elasticsearch-plugin install https://github.com/o19s/elasticsearch-learning-to-rank/releases/download/v1.5.4-es7.11.2/ltr-plugin-v1.5.4-es7.11.2.zip
配置
安装完成后,你需要配置Elasticsearch以使用LTR插件。以下是一个简单的配置示例:
ltr:
store:
index: ".ltrstore"
max_size: 100mb
使用
以下是一个简单的使用示例,展示如何使用LTR插件进行搜索:
POST /_search
{
"query": {
"match": {
"content": "Elasticsearch"
}
},
"rescore": {
"window_size": 100,
"query": {
"rescore_query": {
"sltr": {
"params": {
"keywords": "Elasticsearch"
},
"model": "my_ltr_model"
}
}
}
}
}
3. 应用案例和最佳实践
应用案例
- 电子商务搜索:通过LTR插件,电子商务平台可以根据用户的搜索历史和购买行为,动态调整商品的排序,提升用户的购物体验。
- 文档搜索:在文档管理系统中,LTR可以帮助用户更快地找到相关文档,尤其是在文档数量庞大的情况下。
- 新闻推荐:新闻网站可以使用LTR来个性化推荐新闻内容,根据用户的阅读历史和兴趣,调整新闻的排序。
最佳实践
- 数据收集:确保有足够的高质量数据来训练模型,包括用户的搜索行为和反馈。
- 特征工程:选择合适的特征来训练模型,特征的选择直接影响到模型的效果。
- 模型评估:定期评估模型的性能,确保其在实际应用中的效果。
4. 典型生态项目
- Elasticsearch:作为核心搜索引擎,Elasticsearch提供了强大的搜索和分析功能。
- Kibana:用于数据可视化和监控,帮助用户更好地理解和分析搜索数据。
- Logstash:用于数据收集和处理,确保有足够的数据来训练LTR模型。
- XGBoost:一个流行的机器学习库,常用于训练LTR模型。
通过以上模块的介绍,你可以快速上手并深入了解Elasticsearch Learning to Rank项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0335- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58