Elasticsearch Learning to Rank 项目教程
2024-09-15 12:31:12作者:何将鹤
1. 项目介绍
Elasticsearch Learning to Rank(简称 Elasticsearch LTR)是一个开源插件,旨在通过机器学习技术提升Elasticsearch中的搜索相关性。该插件允许用户训练和使用排序模型,以优化搜索结果的排名。Elasticsearch LTR 的核心思想是利用已有的搜索数据和用户反馈来训练模型,从而自动调整搜索结果的排序,使其更符合用户的期望。
2. 项目快速启动
安装
首先,确保你已经安装了Elasticsearch。然后,你可以通过以下命令安装Elasticsearch LTR插件:
./bin/elasticsearch-plugin install https://github.com/o19s/elasticsearch-learning-to-rank/releases/download/v1.5.4-es7.11.2/ltr-plugin-v1.5.4-es7.11.2.zip
配置
安装完成后,你需要配置Elasticsearch以使用LTR插件。以下是一个简单的配置示例:
ltr:
store:
index: ".ltrstore"
max_size: 100mb
使用
以下是一个简单的使用示例,展示如何使用LTR插件进行搜索:
POST /_search
{
"query": {
"match": {
"content": "Elasticsearch"
}
},
"rescore": {
"window_size": 100,
"query": {
"rescore_query": {
"sltr": {
"params": {
"keywords": "Elasticsearch"
},
"model": "my_ltr_model"
}
}
}
}
}
3. 应用案例和最佳实践
应用案例
- 电子商务搜索:通过LTR插件,电子商务平台可以根据用户的搜索历史和购买行为,动态调整商品的排序,提升用户的购物体验。
- 文档搜索:在文档管理系统中,LTR可以帮助用户更快地找到相关文档,尤其是在文档数量庞大的情况下。
- 新闻推荐:新闻网站可以使用LTR来个性化推荐新闻内容,根据用户的阅读历史和兴趣,调整新闻的排序。
最佳实践
- 数据收集:确保有足够的高质量数据来训练模型,包括用户的搜索行为和反馈。
- 特征工程:选择合适的特征来训练模型,特征的选择直接影响到模型的效果。
- 模型评估:定期评估模型的性能,确保其在实际应用中的效果。
4. 典型生态项目
- Elasticsearch:作为核心搜索引擎,Elasticsearch提供了强大的搜索和分析功能。
- Kibana:用于数据可视化和监控,帮助用户更好地理解和分析搜索数据。
- Logstash:用于数据收集和处理,确保有足够的数据来训练LTR模型。
- XGBoost:一个流行的机器学习库,常用于训练LTR模型。
通过以上模块的介绍,你可以快速上手并深入了解Elasticsearch Learning to Rank项目。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5