Elasticsearch Learning to Rank 项目教程
2024-09-15 03:56:00作者:何将鹤
1. 项目介绍
Elasticsearch Learning to Rank(简称 Elasticsearch LTR)是一个开源插件,旨在通过机器学习技术提升Elasticsearch中的搜索相关性。该插件允许用户训练和使用排序模型,以优化搜索结果的排名。Elasticsearch LTR 的核心思想是利用已有的搜索数据和用户反馈来训练模型,从而自动调整搜索结果的排序,使其更符合用户的期望。
2. 项目快速启动
安装
首先,确保你已经安装了Elasticsearch。然后,你可以通过以下命令安装Elasticsearch LTR插件:
./bin/elasticsearch-plugin install https://github.com/o19s/elasticsearch-learning-to-rank/releases/download/v1.5.4-es7.11.2/ltr-plugin-v1.5.4-es7.11.2.zip
配置
安装完成后,你需要配置Elasticsearch以使用LTR插件。以下是一个简单的配置示例:
ltr:
store:
index: ".ltrstore"
max_size: 100mb
使用
以下是一个简单的使用示例,展示如何使用LTR插件进行搜索:
POST /_search
{
"query": {
"match": {
"content": "Elasticsearch"
}
},
"rescore": {
"window_size": 100,
"query": {
"rescore_query": {
"sltr": {
"params": {
"keywords": "Elasticsearch"
},
"model": "my_ltr_model"
}
}
}
}
}
3. 应用案例和最佳实践
应用案例
- 电子商务搜索:通过LTR插件,电子商务平台可以根据用户的搜索历史和购买行为,动态调整商品的排序,提升用户的购物体验。
- 文档搜索:在文档管理系统中,LTR可以帮助用户更快地找到相关文档,尤其是在文档数量庞大的情况下。
- 新闻推荐:新闻网站可以使用LTR来个性化推荐新闻内容,根据用户的阅读历史和兴趣,调整新闻的排序。
最佳实践
- 数据收集:确保有足够的高质量数据来训练模型,包括用户的搜索行为和反馈。
- 特征工程:选择合适的特征来训练模型,特征的选择直接影响到模型的效果。
- 模型评估:定期评估模型的性能,确保其在实际应用中的效果。
4. 典型生态项目
- Elasticsearch:作为核心搜索引擎,Elasticsearch提供了强大的搜索和分析功能。
- Kibana:用于数据可视化和监控,帮助用户更好地理解和分析搜索数据。
- Logstash:用于数据收集和处理,确保有足够的数据来训练LTR模型。
- XGBoost:一个流行的机器学习库,常用于训练LTR模型。
通过以上模块的介绍,你可以快速上手并深入了解Elasticsearch Learning to Rank项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250