QuickRank:高效Learning-to-Rank工具箱的首选
2024-06-19 12:22:42作者:钟日瑜
项目简介
QuickRank是一个以效率为核心设计的C++ Learning-to-Rank(LtR)算法套件。它提供了多种不同的LtR算法实现,包括梯度提升树(GBRT)、LamdaMART等,并包含了独特的学习优化策略。无论你是信息检索专家还是机器学习爱好者,这个项目都能满足你在排名问题上的需求。

项目技术分析
QuickRank实现了一系列经典的排序算法:
- GBRT 和 LamdaMART 基于Boosting思想,用于提高预测性能。
- Oblivious GBRT / LamdaMART 是受到I. Segalovich论文启发的简化版本,它们在保持精度的同时提高了计算效率。
- CoordinateAscent 和 LineSearch 用于线性特征模型,适用于信息检索场景。
- RankBoost 利用Boosting提升排序性能。
- DART 结合Dropout和多回归树,增加了模型的多样性。
- Selective 通过选择性增强提升模型效率。
此外,QuickRank还提供了以下优化方法:
- CLEAVER 优化树集合以实现高效的排名。
- X-CLEAVER 和 X-DART 分别在树生长和修剪上进行改进,进一步优化了学习过程。
这些算法都经过精心设计,易于使用且可扩展性强。
应用场景
QuickRank在多个领域有着广泛的应用:
- 搜索引擎:用于提高搜索结果的排序质量,从而提升用户体验。
- 推荐系统:通过学习用户的偏好,提供个性化的商品或服务排名。
- 在线广告:确定最有可能点击的广告排列顺序。
- 数据挖掘与信息检索:用于处理大量文档并按照相关性进行排序。
项目特点
QuickRank有以下几个显著特点:
- 效率优先:为保证快速运行,QuickRank在设计时就考虑到了内存管理和计算优化。
- 多样化算法:涵盖了从基本到先进的排序算法,适合各种任务需求。
- 易用性:使用CMake构建系统,兼容多种操作系统,且提供了详细的使用指南。
- 持续更新:项目不断进行算法和功能的迭代,以适应最新的研究进展。
要开始使用QuickRank,只需遵循项目提供的安装和构建指南,然后利用提供的训练和验证文件,以及自定义的特征文件,就可以开始训练自己的模型。
小结
QuickRank是一个强大而灵活的LtR工具包,它将帮助开发者和研究人员快速实现高性能的排序算法。其丰富的特性、强大的优化能力和广泛的应用范围,使它成为解决复杂排名问题的理想选择。如果你正在寻找一个可靠的Learning-to-Rank解决方案,那么QuickRank无疑值得你尝试。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869