PyKEEN项目在Apple Silicon设备上的MPS支持现状与解决方案
背景介绍
PyKEEN是一个流行的知识图谱嵌入学习框架,它基于PyTorch构建,主要用于知识图谱表示学习任务。随着Apple Silicon芯片(M1/M2/M3)的普及,许多开发者希望在Mac设备上利用Metal Performance Shaders(MPS)后端来加速PyKEEN模型的训练和评估过程。
当前MPS支持情况
目前PyKEEN对MPS后端的支持仍处于开发阶段,主要存在以下问题:
-
评估阶段内存溢出(OOM)问题:当使用MPS设备时,模型在评估阶段容易出现内存不足的错误,而同样的配置在CPU上可以正常运行。
-
自动内存管理限制:PyKEEN依赖的torch-max-mem库目前主要针对CUDA设备优化,对MPS设备的支持尚不完善。
-
张量切片断言错误:在某些情况下会出现MPSNDArray切片维度不匹配的错误,导致程序异常终止。
临时解决方案
对于希望在Apple Silicon设备上使用PyKEEN的开发者,目前有以下几种可行的解决方案:
- 回退到CPU模式:虽然性能较低,但可以保证功能完整性
device = "cpu"
- 显式指定评估批次大小:通过手动控制评估时的批次大小来避免内存溢出
pipeline(
evaluation_kwargs=dict(batch_size=256),
device="mps",
...
)
- 启用评估回退机制:当MPS评估失败时自动回退到CPU
evaluation_fallback=True
技术细节分析
出现这些问题的主要原因是:
-
MPS后端的内存管理机制与CUDA不同,PyKEEN现有的内存优化策略不能直接适用。
-
某些PyTorch操作在MPS后端的实现可能与CPU/CUDA存在差异,特别是在处理张量切片和维度变换时。
-
评估阶段通常需要处理更大的批量数据,对内存压力更大,更容易触发MPS的内存限制。
未来改进方向
PyKEEN开发团队正在积极改进对MPS的支持,主要工作包括:
-
完善torch-max-mem库对MPS设备的适配。
-
针对MPS后端优化内存管理策略。
-
增加对MPS特定错误的处理和兼容性测试。
最佳实践建议
对于Apple Silicon用户,建议:
-
保持PyTorch和PyKEEN版本更新,以获取最新的MPS支持改进。
-
在关键任务中先使用CPU模式验证模型正确性,再尝试MPS加速。
-
监控内存使用情况,合理设置批次大小。
-
关注PyKEEN官方更新,及时了解MPS支持的最新进展。
随着PyTorch对MPS支持的不断完善,预计未来PyKEEN在Apple Silicon设备上的性能和稳定性将得到显著提升。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









