PyKEEN项目在Apple Silicon设备上的MPS支持现状与解决方案
背景介绍
PyKEEN是一个流行的知识图谱嵌入学习框架,它基于PyTorch构建,主要用于知识图谱表示学习任务。随着Apple Silicon芯片(M1/M2/M3)的普及,许多开发者希望在Mac设备上利用Metal Performance Shaders(MPS)后端来加速PyKEEN模型的训练和评估过程。
当前MPS支持情况
目前PyKEEN对MPS后端的支持仍处于开发阶段,主要存在以下问题:
-
评估阶段内存溢出(OOM)问题:当使用MPS设备时,模型在评估阶段容易出现内存不足的错误,而同样的配置在CPU上可以正常运行。
-
自动内存管理限制:PyKEEN依赖的torch-max-mem库目前主要针对CUDA设备优化,对MPS设备的支持尚不完善。
-
张量切片断言错误:在某些情况下会出现MPSNDArray切片维度不匹配的错误,导致程序异常终止。
临时解决方案
对于希望在Apple Silicon设备上使用PyKEEN的开发者,目前有以下几种可行的解决方案:
- 回退到CPU模式:虽然性能较低,但可以保证功能完整性
device = "cpu"
- 显式指定评估批次大小:通过手动控制评估时的批次大小来避免内存溢出
pipeline(
evaluation_kwargs=dict(batch_size=256),
device="mps",
...
)
- 启用评估回退机制:当MPS评估失败时自动回退到CPU
evaluation_fallback=True
技术细节分析
出现这些问题的主要原因是:
-
MPS后端的内存管理机制与CUDA不同,PyKEEN现有的内存优化策略不能直接适用。
-
某些PyTorch操作在MPS后端的实现可能与CPU/CUDA存在差异,特别是在处理张量切片和维度变换时。
-
评估阶段通常需要处理更大的批量数据,对内存压力更大,更容易触发MPS的内存限制。
未来改进方向
PyKEEN开发团队正在积极改进对MPS的支持,主要工作包括:
-
完善torch-max-mem库对MPS设备的适配。
-
针对MPS后端优化内存管理策略。
-
增加对MPS特定错误的处理和兼容性测试。
最佳实践建议
对于Apple Silicon用户,建议:
-
保持PyTorch和PyKEEN版本更新,以获取最新的MPS支持改进。
-
在关键任务中先使用CPU模式验证模型正确性,再尝试MPS加速。
-
监控内存使用情况,合理设置批次大小。
-
关注PyKEEN官方更新,及时了解MPS支持的最新进展。
随着PyTorch对MPS支持的不断完善,预计未来PyKEEN在Apple Silicon设备上的性能和稳定性将得到显著提升。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00