首页
/ QwenLM/Qwen项目中vLLM加速效果的技术解析

QwenLM/Qwen项目中vLLM加速效果的技术解析

2025-05-12 15:26:38作者:何将鹤

背景介绍

在QwenLM/Qwen项目中使用vLLM进行模型加速时,用户反馈Qwen-14B-Chat-Int4模型在使用vLLM后并未观察到明显的加速效果。这一现象引发了关于vLLM加速机制和适用场景的深入讨论。

vLLM加速原理分析

vLLM的加速效果主要体现在两个方面:

  1. 吞吐量(Throughput)提升:通过优化的内存管理和请求调度机制,vLLM能够显著提高系统的整体吞吐量,特别是在处理多个并发请求时。

  2. 延迟(Latency)优化:对于非量化模型,在多GPU环境下,vLLM采用tensor parallel并行方式,相比transformers的model parallel方式能实现更低的延迟。

量化模型场景分析

针对Qwen-14B-Chat-Int4这类GPTQ量化模型,需要特别注意:

  1. 底层实现相似性:transformers使用的auto-gptq和vLLM都基于exllama v2 kernel实现,在单请求延迟方面并无明显差异。

  2. 显存优化优势:vLLM推理量化模型的主要优势在于显存占用的降低,这使得系统能够承载更高的并发请求量,从而提升整体吞吐量。

使用建议

对于希望使用vLLM加速Qwen模型的开发者,建议:

  1. 版本选择:确保使用vLLM 0.2.6及以上版本,这些版本原生支持GPTQ量化。

  2. 场景适配:如果是单请求测试场景,不应期望延迟有显著降低;在高并发生产环境中,vLLM的吞吐量优势才会充分体现。

  3. 量化模型使用:对于GPTQ量化模型,vLLM的主要价值在于显存优化而非单请求加速。

结论

理解vLLM的加速机制对于合理使用该技术至关重要。在Qwen项目中使用vLLM时,开发者应根据具体应用场景(单请求测试还是高并发生产)来合理评估性能表现,避免对加速效果产生不切实际的预期。对于量化模型,vLLM的价值更多体现在显存优化和吞吐量提升上。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
flutter_flutterflutter_flutter
暂无简介
Dart
715
172
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1