首页
/ 探秘腹部多器官分割:Abdominal Multi-Organ Segmentation开源项目

探秘腹部多器官分割:Abdominal Multi-Organ Segmentation开源项目

2024-06-19 20:23:22作者:尤峻淳Whitney

在医疗图像分析领域,精确的器官分割是许多诊断和研究的关键步骤。今天,我们为您推荐一个基于PyTorch实现的腹部多器官分割项目——abdominal-multi-organ-segmentation。该项目专注于利用深度学习技术进行13种器官的自动分割,包括脾脏、双肾、胆囊、食道、肝脏、胃、主动脉、下腔静脉等。

项目介绍

该项目源自一项名为“Multi-atlas labeling Beyond the Cranial Vault”的在线挑战,它提供了一个训练集,包含30个CT数据,用于训练和评估模型。通过这个项目,开发者分享了他们在处理医学图像数据、构建网络架构以及优化损失函数方面的经验。

技术分析

项目采用的是两个U形结构的3D全卷积网络(FCN),并添加了残差连接,以提高网络的表现。在网络的最后两个阶段,使用了混合膨胀卷积层,旨在增加接收域。这些设计灵感主要来源于[1]。

在实现上,开发者选择了Adam优化器,初始学习率设定为1e-4,在三块GTX 1080Ti显卡上以每批3个样本的大小进行训练,整个训练过程大约需要13小时。

应用场景

此项目及其技术在以下场景中尤其有用:

  1. 医学影像分析:帮助医生快速准确地识别和测量器官,缩短诊断时间。
  2. 疾病早期筛查:自动分割可协助发现潜在的病理变化,如肿瘤或炎症。
  3. 教育与研究:为医学生和研究人员提供一个现实世界的数据集和强大的分割工具。

项目特点

  1. 高效网络架构:结合U型网络和残差连接,针对3D医学图像进行了优化。
  2. 多样化的损失函数:提供了多种损失函数供用户选择,适应不同的数据分布和任务需求。
  3. 易于复现:清晰的数据管理和处理流程,便于其他开发者理解和复制实验结果。
  4. 直观的结果展示:使用mean dice系数作为评估指标,并以可视化方式展示了最佳分割结果。

项目还包括待完成的任务,如更多的数据增强策略,以进一步提升模型的泛化能力。

总的来说,无论您是深度学习初学者还是寻求改进医疗图像分割的专家,abdominal-multi-organ-segmentation都是值得探索的宝贵资源。立即尝试,让它在您的医疗图像分析工作中发挥出强大效能吧!

参考资料:

  1. Roth H R, Shen C, Oda H, et al. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation[J]. arXiv preprint arXiv:1806.02237, 2018.

其他参考文献略...

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
268
2.54 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
435
pytorchpytorch
Ascend Extension for PyTorch
Python
100
126
flutter_flutterflutter_flutter
暂无简介
Dart
558
124
fountainfountain
一个用于服务器应用开发的综合工具库。 - 零配置文件 - 环境变量和命令行参数配置 - 约定优于配置 - 深刻利用仓颉语言特性 - 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
IssueSolutionDemosIssueSolutionDemos
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
605
cangjie_compilercangjie_compiler
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1