探秘腹部多器官分割:Abdominal Multi-Organ Segmentation开源项目
2024-06-19 20:23:22作者:尤峻淳Whitney
在医疗图像分析领域,精确的器官分割是许多诊断和研究的关键步骤。今天,我们为您推荐一个基于PyTorch实现的腹部多器官分割项目——abdominal-multi-organ-segmentation。该项目专注于利用深度学习技术进行13种器官的自动分割,包括脾脏、双肾、胆囊、食道、肝脏、胃、主动脉、下腔静脉等。
项目介绍
该项目源自一项名为“Multi-atlas labeling Beyond the Cranial Vault”的在线挑战,它提供了一个训练集,包含30个CT数据,用于训练和评估模型。通过这个项目,开发者分享了他们在处理医学图像数据、构建网络架构以及优化损失函数方面的经验。
技术分析
项目采用的是两个U形结构的3D全卷积网络(FCN),并添加了残差连接,以提高网络的表现。在网络的最后两个阶段,使用了混合膨胀卷积层,旨在增加接收域。这些设计灵感主要来源于[1]。
在实现上,开发者选择了Adam优化器,初始学习率设定为1e-4,在三块GTX 1080Ti显卡上以每批3个样本的大小进行训练,整个训练过程大约需要13小时。
应用场景
此项目及其技术在以下场景中尤其有用:
- 医学影像分析:帮助医生快速准确地识别和测量器官,缩短诊断时间。
- 疾病早期筛查:自动分割可协助发现潜在的病理变化,如肿瘤或炎症。
- 教育与研究:为医学生和研究人员提供一个现实世界的数据集和强大的分割工具。
项目特点
- 高效网络架构:结合U型网络和残差连接,针对3D医学图像进行了优化。
- 多样化的损失函数:提供了多种损失函数供用户选择,适应不同的数据分布和任务需求。
- 易于复现:清晰的数据管理和处理流程,便于其他开发者理解和复制实验结果。
- 直观的结果展示:使用mean dice系数作为评估指标,并以可视化方式展示了最佳分割结果。
项目还包括待完成的任务,如更多的数据增强策略,以进一步提升模型的泛化能力。
总的来说,无论您是深度学习初学者还是寻求改进医疗图像分割的专家,abdominal-multi-organ-segmentation都是值得探索的宝贵资源。立即尝试,让它在您的医疗图像分析工作中发挥出强大效能吧!
参考资料:
- Roth H R, Shen C, Oda H, et al. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation[J]. arXiv preprint arXiv:1806.02237, 2018.
其他参考文献略...
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1