XTuner项目中llava-intern2-7b模型训练与转换问题分析
2025-06-13 10:06:45作者:昌雅子Ethen
模型训练配置与结果差异
在XTuner项目中使用llava-intern2-7b模型进行训练时,研究人员发现无法复现官方提供的基准结果。训练过程中使用了8张40GB显存的A100 GPU,batch size设置为4,采用DeepSpeed的zero2优化策略进行微调。
训练曲线显示loss值收敛情况良好,但最终在mmbench-dev评测集上的表现与预期存在差距。评测结果显示平均准确率为68.6%,其中各子类别的表现分别为:AR(68.8%)、CP(83.1%)、FP-C(57.3%)、FP-S(69.3%)、LR(44.9%)和RR(67.0%)。
关键问题分析
-
训练配置差异:官方使用的是8张80GB显存的A100 GPU,batch size设置为16。对于40GB显存的GPU,建议将batch size调整为8,同时将accumulative_counts设置为2,以保持global batch size的一致性。
-
模型转换问题:在将训练好的模型权重转换为HuggingFace格式时,40GB显存的GPU出现了OOM(内存不足)问题。研究发现:
- 使用NPROC_PER_NODE=8参数会导致OOM
- 使用NPROC_PER_NODE=1参数可以成功完成转换
- 直接使用xtuner convert命令(不带NPROC_PER_NODE参数)也会触发8卡并行加载导致OOM
解决方案与建议
-
训练配置调整:
- 对于40GB显存的GPU,建议采用batch size=8,accumulative_counts=2的组合
- 确保使用DeepSpeed zero2优化策略
- 监控训练过程中的loss曲线,确保收敛情况良好
-
模型转换优化:
- 确认环境变量中是否设置了NPROC_PER_NODE,这可能是导致转换时自动使用多卡的原因
- 对于显存有限的设备,强制使用单卡转换(NPROC_PER_NODE=1)是可行的解决方案
- 转换过程不会影响模型最终的评测结果,可以放心使用
-
性能优化方向:
- 考虑使用梯度检查点技术减少显存占用
- 评估混合精度训练对显存和性能的影响
- 对于大型模型,可以探索更高效的内存优化策略
技术要点总结
llava-intern2-7b作为一个大型多模态模型,在训练和转换过程中对硬件资源有较高要求。实际部署时需要根据可用硬件资源灵活调整训练参数,特别注意batch size和并行策略的选择。模型转换过程中的显存问题可以通过限制GPU数量来解决,这不会影响模型最终性能。对于希望复现官方结果的用户,建议尽可能匹配官方硬件配置,或在资源有限时合理调整训练参数保持等效的global batch size。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
664
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259