XTuner项目中llava-intern2-7b模型训练与转换问题分析
2025-06-13 10:06:45作者:昌雅子Ethen
模型训练配置与结果差异
在XTuner项目中使用llava-intern2-7b模型进行训练时,研究人员发现无法复现官方提供的基准结果。训练过程中使用了8张40GB显存的A100 GPU,batch size设置为4,采用DeepSpeed的zero2优化策略进行微调。
训练曲线显示loss值收敛情况良好,但最终在mmbench-dev评测集上的表现与预期存在差距。评测结果显示平均准确率为68.6%,其中各子类别的表现分别为:AR(68.8%)、CP(83.1%)、FP-C(57.3%)、FP-S(69.3%)、LR(44.9%)和RR(67.0%)。
关键问题分析
-
训练配置差异:官方使用的是8张80GB显存的A100 GPU,batch size设置为16。对于40GB显存的GPU,建议将batch size调整为8,同时将accumulative_counts设置为2,以保持global batch size的一致性。
-
模型转换问题:在将训练好的模型权重转换为HuggingFace格式时,40GB显存的GPU出现了OOM(内存不足)问题。研究发现:
- 使用NPROC_PER_NODE=8参数会导致OOM
- 使用NPROC_PER_NODE=1参数可以成功完成转换
- 直接使用xtuner convert命令(不带NPROC_PER_NODE参数)也会触发8卡并行加载导致OOM
解决方案与建议
-
训练配置调整:
- 对于40GB显存的GPU,建议采用batch size=8,accumulative_counts=2的组合
- 确保使用DeepSpeed zero2优化策略
- 监控训练过程中的loss曲线,确保收敛情况良好
-
模型转换优化:
- 确认环境变量中是否设置了NPROC_PER_NODE,这可能是导致转换时自动使用多卡的原因
- 对于显存有限的设备,强制使用单卡转换(NPROC_PER_NODE=1)是可行的解决方案
- 转换过程不会影响模型最终的评测结果,可以放心使用
-
性能优化方向:
- 考虑使用梯度检查点技术减少显存占用
- 评估混合精度训练对显存和性能的影响
- 对于大型模型,可以探索更高效的内存优化策略
技术要点总结
llava-intern2-7b作为一个大型多模态模型,在训练和转换过程中对硬件资源有较高要求。实际部署时需要根据可用硬件资源灵活调整训练参数,特别注意batch size和并行策略的选择。模型转换过程中的显存问题可以通过限制GPU数量来解决,这不会影响模型最终性能。对于希望复现官方结果的用户,建议尽可能匹配官方硬件配置,或在资源有限时合理调整训练参数保持等效的global batch size。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1