Niquests 3.13.1 版本发布:HTTP客户端库的优化与改进
Niquests 是一个现代化的 HTTP 客户端库,它基于著名的 Requests 库进行了重构和增强。作为一个功能强大且易于使用的工具,Niquests 提供了同步和异步两种操作模式,支持多种高级特性,如 HTTP/2、HTTP/3、连接池管理等。它旨在为开发者提供更高效、更灵活的 HTTP 请求处理能力。
内部模块引用优化
在 3.13.1 版本中,Niquests 引入了一个重要的内部改进:为 urllib3-future 提供了快捷引用路径 niquests.packages.urllib3。这一改动看似简单,实则解决了从 Requests 迁移到 Niquests 时的一个常见痛点。
对于熟悉 Requests 生态的开发者来说,urllib3 是一个核心依赖项。然而,Niquests 使用的是 urllib3-future 这个改进版本。之前,开发者需要手动调整代码中的引用路径,这可能导致混淆和错误。现在,通过提供这个快捷引用,迁移过程变得更加平滑,开发者可以无缝地将现有代码从 Requests 迁移到 Niquests,而无需担心底层依赖的变化。
此外,该版本还提供了对 idna 和 charset_normalizer(同时以 chardet 别名提供)的类似引用方式。这些改进使得 Niquests 的内部结构更加一致,同时也为开发者提供了更好的开发体验。
新增可选依赖项
3.13.1 版本引入了三个新的 extras 选项,进一步扩展了 Niquests 的功能:
- zstd:支持 Zstandard 压缩算法
- brotli:支持 Brotli 压缩算法
- full:包含所有可选依赖项
这些新的 extras 选项使得开发者能够根据需要灵活地选择安装哪些功能。例如,如果项目需要处理使用 Brotli 压缩的 HTTP 响应,现在可以通过 pip install niquests[brotli] 来轻松添加这一支持。而 full 选项则为那些需要所有功能的开发者提供了便利。
这种模块化的设计理念使得 Niquests 既保持了核心的轻量性,又能够通过可选依赖项扩展功能,满足不同场景下的需求。
文档改进
优秀的文档是任何开源项目成功的关键因素之一。在 3.13.1 版本中,Niquests 团队着重改进了文档质量,特别是在以下几个方面:
- 同步/异步示例:更清晰地展示了如何在同步和异步模式下使用 Niquests
- 迁移指南:提供了更多从 Requests 迁移到 Niquests 的实用代码片段
这些改进使得新用户能够更快地上手 Niquests,同时也帮助现有用户更好地理解和使用库的高级功能。特别是对于那些同时需要处理同步和异步 HTTP 请求的开发者来说,新的文档示例将大大降低学习曲线。
总结
Niquests 3.13.1 版本虽然是一个小版本更新,但包含了几项对开发者体验有实质性提升的改进。从内部引用的优化到新增的可选依赖项,再到文档的完善,这些变化都体现了项目团队对开发者需求的关注和对产品质量的追求。
对于正在考虑从 Requests 迁移到更现代 HTTP 客户端的开发者,或者需要同时处理同步和异步 HTTP 请求的项目,Niquests 3.13.1 版本提供了一个值得尝试的选择。其平衡的功能集、良好的兼容性和不断改进的文档,使得它成为一个有吸引力的 HTTP 客户端解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00