首页
/ TensorLayer强化学习多智能体:MADDPG与QMIX算法实现

TensorLayer强化学习多智能体:MADDPG与QMIX算法实现

2026-02-06 04:35:22作者:范靓好Udolf

多智能体强化学习(MARL)在协同控制、分布式决策等场景中应用广泛。本文基于TensorLayer框架,详解如何通过扩展单智能体算法实现MADDPG(多智能体深度确定性策略梯度)和QMIX(Q值混合网络),并提供完整实现路径与工程实践指南。

技术背景与算法选型

在多智能体环境中,智能体需解决动态博弈信用分配两大核心问题。MADDPG通过独立策略与集中式训练解决前者,QMIX则通过值函数分解处理后者。两者均基于TensorLayer的模块化设计实现:

算法架构对比

特性 MADDPG QMIX
策略类型 连续动作 离散动作
训练方式 集中式 critic 分布式 Q + 集中式混合
通信机制 共享经验池 全局奖励信号
适用场景 机器人协作 星际争霸微操作

MADDPG实现:从单智能体到多智能体

核心架构改造

基于DDPG的基础架构,MADDPG需要三大关键扩展:

  1. 多智能体观测处理:在examples/reinforcement_learning/tutorial_DDPG.py的DDPG类中,修改状态输入维度:
# 修改自tutorial_DDPG.py第74行
def __init__(self, action_dim, state_dim, num_agents, action_range):
    self.memory = np.zeros((MEMORY_CAPACITY, num_agents*state_dim*2 + num_agents*action_dim + 1), dtype=np.float32)
    # 其余初始化代码...
  1. 集中式Critic网络:扩展examples/reinforcement_learning/tutorial_DDPG.py第97行的critic网络,拼接所有智能体的状态与动作:
def get_critic(input_state_shape, input_action_shape, num_agents, name=''):
    state_input = tl.layers.Input([num_agents, input_state_shape[0]], name='C_s_input')  # [N, n_agents, state_dim]
    action_input = tl.layers.Input([num_agents, input_action_shape[0]], name='C_a_input')  # [N, n_agents, action_dim]
    # 扁平化多智能体观测
    s_flat = tl.layers.Flatten()(state_input)  # [N, n_agents*state_dim]
    a_flat = tl.layers.Flatten()(action_input)  # [N, n_agents*action_dim]
    layer = tl.layers.Concat(1)([s_flat, a_flat])  # 拼接所有智能体信息
    # 后续网络结构保持与tutorial_DDPG.py第108-110行一致
  1. 多智能体经验池:修改examples/reinforcement_learning/tutorial_DDPG.py第195行的store_transition方法,存储所有智能体的交互数据:
def store_transition(self, states, actions, r, states_):
    # states.shape = [n_agents, state_dim]
    transition = np.hstack((states.flatten(), actions.flatten(), [r], states_.flatten()))
    # 其余代码保持与tutorial_DDPG.py第204-209行一致

训练流程调整

examples/reinforcement_learning/tutorial_DDPG.py的主函数中,修改环境交互逻辑以支持多智能体:

# 修改自tutorial_DDPG.py第236-305行
if __name__ == '__main__':
    env = MultiAgentEnv()  # 替换为多智能体环境
    num_agents = env.n_agents
    state_dim = env.observation_space[0].shape[0]
    action_dim = env.action_space[0].shape[0]
    
    agents = [DDPG(action_dim, state_dim, num_agents, action_range) for _ in range(num_agents)]
    
    for episode in range(TRAIN_EPISODES):
        states = env.reset()  # 返回 [n_agents, state_dim]
        episode_reward = 0
        for step in range(MAX_STEPS):
            actions = [agent.get_action(states[i]) for i, agent in enumerate(agents)]
            states_, rewards, dones, _ = env.step(actions)
            
            # 存储联合经验
            agents[0].store_transition(states, actions, np.mean(rewards), states_)
            
            # 集中式训练
            if agents[0].pointer > MEMORY_CAPACITY:
                for agent in agents:
                    agent.learn()
            
            states = states_
            episode_reward += np.mean(rewards)

QMIX实现:值函数分解网络

混合网络设计

QMIX的核心是单调值函数分解,需在examples/reinforcement_learning/tutorial_Qlearning.py基础上添加混合网络层:

class QMIXNet:
    def __init__(self, state_dim, n_agents, hidden_dim=64):
        # 全局状态编码器
        self.state_encoder = tl.layers.Dense(n_units=hidden_dim, act=tf.nn.relu, name='state_encoder')
        # 混合网络参数
        self.hyper_w1 = tl.layers.Dense(n_units=n_agents*hidden_dim, name='hyper_w1')
        self.hyper_b1 = tl.layers.Dense(n_units=hidden_dim, name='hyper_b1')
        self.hyper_w2 = tl.layers.Dense(n_units=hidden_dim, name='hyper_w2')
        self.hyper_b2 = tl.layers.Dense(n_units=1, name='hyper_b2')
        
    def __call__(self, q_values, states):
        # q_values: [batch, n_agents]
        # states: [batch, state_dim]
        bs = q_values.shape[0]
        state_embedding = self.state_encoder(states)  # [bs, hidden_dim]
        
        # 生成混合网络权重
        w1 = tf.reshape(self.hyper_w1(state_embedding), [bs, n_agents, hidden_dim])  # [bs, n_agents, hidden]
        b1 = self.hyper_b1(state_embedding)  # [bs, hidden]
        
        # 第一层混合
        hidden = tf.nn.elu(tf.matmul(q_values[:, None, :], w1)[:, 0] + b1)  # [bs, hidden]
        
        # 第二层混合
        w2 = self.hyper_w2(state_embedding)  # [bs, hidden]
        b2 = self.hyper_b2(state_embedding)  # [bs, 1]
        q_tot = tf.matmul(hidden[:, None, :], w2[:, :, None])[:, 0] + b2  # [bs, 1]
        return q_tot

与Q-learning集成

修改examples/reinforcement_learning/tutorial_Qlearning.py的训练循环,添加混合网络更新:

# 修改自tutorial_Qlearning.py核心训练部分
qmix_net = QMIXNet(state_dim, num_agents)
qmix_optimizer = tf.optimizers.Adam(LR)

for episode in range(TRAIN_EPISODES):
    states = env.reset()
    total_reward = 0
    
    while not done:
        q_values = [agent.get_q_value(states[i]) for i, agent in enumerate(agents)]
        q_tot = qmix_net(tf.stack(q_values), global_state)
        
        # QMIX损失计算
        with tf.GradientTape() as tape:
            target_q = r + GAMMA * qmix_net(target_q_values, next_global_state)
            loss = tf.losses.mean_squared_error(target_q, q_tot)
        
        grads = tape.gradient(loss, qmix_net.trainable_weights + agents_q_weights)
        qmix_optimizer.apply_gradients(zip(grads, qmix_net.trainable_weights + agents_q_weights))

工程实践与性能优化

网络结构复用

利用TensorLayer的模块化设计,可直接复用以下预定义层加速开发:

分布式训练配置

对于大规模多智能体任务,可结合examples/distributed_training/tutorial_mnist_distributed_trainer.py的Horovod分布式框架,修改如下:

# 在项目根目录执行分布式训练
mpirun -np 4 python -m examples.reinforcement_learning.tutorial_maddpg.py --train

应用场景与可视化

典型案例

  1. 机器人编队控制:基于MADDPG实现多机器人协同搬运,使用examples/app_tutorials/tutorial_human_3dpose_estimation_LCN.py的姿态估计模块获取环境感知

  2. 游戏AI对抗:QMIX在星际争霸微观操作中的应用,参考docs/images/yolov4_image_result.png的目标检测结果作为状态输入

训练过程可视化

使用tensorlayer/visualize.py记录多智能体奖励曲线:

# 插入到训练循环中
tl.visualize.line(
    y=all_episode_reward, 
    save_path='maddpg_training_curve.png',
    title='MADDPG Multi-Agent Training Curve'
)

总结与扩展方向

本文基于TensorLayer实现了两种主流多智能体算法,关键收获包括:

  1. 架构复用:通过扩展examples/reinforcement_learning/tutorial_DDPG.pyexamples/reinforcement_learning/tutorial_Qlearning.py的基础组件,降低开发复杂度
  2. 工程最佳实践:使用tensorlayer/models/core.py的Model类封装多智能体策略,便于部署与迁移
  3. 性能优化:结合examples/performance_test/vgg/的性能测试工具,验证多智能体训练效率

扩展方向建议:

完整代码与示例可在项目examples/reinforcement_learning/目录下获取,建议配合docs/user/get_start_advance.rst的高级教程进行实践。

登录后查看全文
热门项目推荐
相关项目推荐