Galacean Runtime 中的多渲染目标(MRT)支持实现解析
2025-06-13 15:23:00作者:胡易黎Nicole
runtime
A typescript interactive engine, support 2D, 3D, animation, physics, built on WebGL and glTF.
多渲染目标技术概述
多渲染目标(Multiple Render Targets, MRT)是现代图形渲染管线中的一项重要技术,它允许在单次渲染过程中将数据同时输出到多个颜色缓冲区。这项技术在延迟渲染(Deferred Rendering)、屏幕空间反射(Screen Space Reflection)等高级渲染技术中有着广泛应用。
WebGL 环境下的MRT实现差异
在Galacean Runtime项目中,MRT的实现需要考虑不同WebGL版本的技术差异:
WebGL 1.0的实现方式
WebGL 1.0通过gl_FragData数组实现MRT:
// 多目标输出
gl_FragData[0] = vec4(1.0, 0.0, 0.0, 1.0); // 第一个渲染目标
gl_FragData[1] = vec4(0.0, 1.0, 0.0, 1.0); // 第二个渲染目标
需要注意的是,gl_FragColor和gl_FragData不能混用,这是WebGL 1.0的一个重要限制。
WebGL 2.0的实现方式
WebGL 2.0引入了更现代的语法,通过layout(location)限定符明确指定输出位置:
// 单目标输出
layout(location = 0) out vec4 fragColor;
// 多目标输出
layout(location = 0) out vec4 fragColor0;
layout(location = 1) out vec4 fragColor1;
WebGL 2.0要求必须明确指定输出位置,否则会导致编译错误。这种设计提供了更精确的控制能力,允许开发者灵活选择输出到哪些渲染目标。
Galacean Runtime的ShaderLab实现
Galacean Runtime参考了Unity ShaderLab的设计理念,提供了更友好的MRT语法支持:
基础MRT输出
fixed4 frag (v2f i) : SV_Target
{
return fixed4(i.uv, 0, 0);
}
结构化MRT输出
struct fragOutput {
fixed4 color : SV_Target;
fixed4 color1 : SV_Target1;
};
fragOutput frag (v2f i)
{
fragOutput o;
o.color = fixed4(i.uv, 0, 0);
o.color1 = fixed4(i.uv, 1, 0);
return o;
}
这种语法设计既保持了与行业标准的一致性,又提供了良好的可读性和易用性。
技术实现细节
在底层实现上,Galacean Runtime需要处理以下关键点:
- 语法转换:将高级的ShaderLab语法转换为底层WebGL可识别的GLSL代码
- 版本适配:针对WebGL 1.0和2.0的不同特性生成不同的着色器代码
- 错误检查:确保MRT使用方式的正确性,包括:
- 禁止
gl_FragColor和gl_FragData混用 - 确保WebGL 2.0中所有输出都有明确的location指定
- 验证输出数据类型符合规范
- 禁止
最佳实践建议
- 跨版本兼容性:如果需要支持WebGL 1.0和2.0,应准备两套着色器代码
- 性能考量:MRT会增加显存带宽消耗,应合理控制渲染目标数量和精度
- 调试技巧:可以通过单独查看每个渲染目标的内容来调试MRT效果
总结
Galacean Runtime对MRT的支持实现了从高级ShaderLab语法到底层WebGL的完整映射,为开发者提供了统一、便捷的多渲染目标编程接口。这种设计既考虑了易用性,又确保了底层实现的正确性和高效性,是项目渲染管线的重要组成部分。
runtime
A typescript interactive engine, support 2D, 3D, animation, physics, built on WebGL and glTF.
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249