Galacean Runtime 中的多渲染目标(MRT)支持实现解析
2025-06-13 15:23:00作者:胡易黎Nicole
runtime
A typescript interactive engine, support 2D, 3D, animation, physics, built on WebGL and glTF.
多渲染目标技术概述
多渲染目标(Multiple Render Targets, MRT)是现代图形渲染管线中的一项重要技术,它允许在单次渲染过程中将数据同时输出到多个颜色缓冲区。这项技术在延迟渲染(Deferred Rendering)、屏幕空间反射(Screen Space Reflection)等高级渲染技术中有着广泛应用。
WebGL 环境下的MRT实现差异
在Galacean Runtime项目中,MRT的实现需要考虑不同WebGL版本的技术差异:
WebGL 1.0的实现方式
WebGL 1.0通过gl_FragData数组实现MRT:
// 多目标输出
gl_FragData[0] = vec4(1.0, 0.0, 0.0, 1.0); // 第一个渲染目标
gl_FragData[1] = vec4(0.0, 1.0, 0.0, 1.0); // 第二个渲染目标
需要注意的是,gl_FragColor和gl_FragData不能混用,这是WebGL 1.0的一个重要限制。
WebGL 2.0的实现方式
WebGL 2.0引入了更现代的语法,通过layout(location)限定符明确指定输出位置:
// 单目标输出
layout(location = 0) out vec4 fragColor;
// 多目标输出
layout(location = 0) out vec4 fragColor0;
layout(location = 1) out vec4 fragColor1;
WebGL 2.0要求必须明确指定输出位置,否则会导致编译错误。这种设计提供了更精确的控制能力,允许开发者灵活选择输出到哪些渲染目标。
Galacean Runtime的ShaderLab实现
Galacean Runtime参考了Unity ShaderLab的设计理念,提供了更友好的MRT语法支持:
基础MRT输出
fixed4 frag (v2f i) : SV_Target
{
return fixed4(i.uv, 0, 0);
}
结构化MRT输出
struct fragOutput {
fixed4 color : SV_Target;
fixed4 color1 : SV_Target1;
};
fragOutput frag (v2f i)
{
fragOutput o;
o.color = fixed4(i.uv, 0, 0);
o.color1 = fixed4(i.uv, 1, 0);
return o;
}
这种语法设计既保持了与行业标准的一致性,又提供了良好的可读性和易用性。
技术实现细节
在底层实现上,Galacean Runtime需要处理以下关键点:
- 语法转换:将高级的ShaderLab语法转换为底层WebGL可识别的GLSL代码
- 版本适配:针对WebGL 1.0和2.0的不同特性生成不同的着色器代码
- 错误检查:确保MRT使用方式的正确性,包括:
- 禁止
gl_FragColor和gl_FragData混用 - 确保WebGL 2.0中所有输出都有明确的location指定
- 验证输出数据类型符合规范
- 禁止
最佳实践建议
- 跨版本兼容性:如果需要支持WebGL 1.0和2.0,应准备两套着色器代码
- 性能考量:MRT会增加显存带宽消耗,应合理控制渲染目标数量和精度
- 调试技巧:可以通过单独查看每个渲染目标的内容来调试MRT效果
总结
Galacean Runtime对MRT的支持实现了从高级ShaderLab语法到底层WebGL的完整映射,为开发者提供了统一、便捷的多渲染目标编程接口。这种设计既考虑了易用性,又确保了底层实现的正确性和高效性,是项目渲染管线的重要组成部分。
runtime
A typescript interactive engine, support 2D, 3D, animation, physics, built on WebGL and glTF.
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694