ChatGLM3微调过程中eval数据集大小引发的IndexError问题解析
2025-05-16 20:40:50作者:温玫谨Lighthearted
问题背景
在使用ChatGLM3进行LORA微调时,开发者可能会遇到一个常见的错误:IndexError: Index 49 out of range for dataset of size 5。这个错误发生在评估阶段,表明程序试图访问超出评估数据集范围的索引。
错误原因深度分析
这个错误的根本原因在于评估数据集(eval_dataset)的大小不足以支持默认设置的评估样本数量。具体来说:
- 在微调脚本中,默认设置会从验证集中选择前50条记录进行评估(
val_dataset.select(list(range(50)))) - 但实际验证集可能只有5条记录(如错误信息所示)
- 当程序尝试访问第49条记录时,由于数据集只有5条,自然抛出索引越界错误
解决方案
针对这一问题,有以下几种解决方案:
方案一:增加验证集数据量
最直接的解决方法是确保验证集包含足够数量的样本。建议验证集至少包含50条以上的记录,以满足默认评估需求。
方案二:修改评估样本数量
如果无法增加验证集数据量,可以修改微调脚本中的评估样本数量设置:
# 修改前
eval_dataset=val_dataset.select(list(range(50))),
# 修改后(例如改为5)
eval_dataset=val_dataset.select(list(range(5))),
方案三:动态调整评估样本数
更健壮的做法是编写代码动态确定评估样本数,不超过验证集的实际大小:
eval_size = min(50, len(val_dataset))
eval_dataset=val_dataset.select(list(range(eval_size))),
最佳实践建议
-
数据划分比例:训练集和验证集的合理比例通常是8:2或7:3,确保验证集有足够样本
-
样本数量检查:在微调前,建议先检查数据集大小:
print(f"训练集大小: {len(train_dataset)}") print(f"验证集大小: {len(val_dataset)}") -
错误处理:可以在代码中添加异常处理,当验证集不足时给出友好提示而非直接报错
技术原理延伸
这个问题的出现反映了深度学习训练中几个重要概念:
-
**评估集(Evaluation Set)**的作用:用于在训练过程中监控模型性能,防止过拟合
-
批量评估的考虑:评估时通常需要足够样本才能准确反映模型性能
-
数据预处理的重要性:在训练前充分了解数据分布和规模是必要的准备工作
总结
在ChatGLM3的LORA微调过程中,评估数据集大小不足是一个常见但容易解决的问题。开发者应当重视数据准备阶段的检查工作,确保训练集和验证集都有足够的样本数量。通过合理的数据划分和适当的代码调整,可以避免这类索引越界错误,保证微调过程的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp课程页面空白问题的技术分析与解决方案5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析8 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
239
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55