首页
/ ChatGLM3微调过程中遇到的内存错误分析与解决方案

ChatGLM3微调过程中遇到的内存错误分析与解决方案

2025-05-16 04:03:53作者:秋泉律Samson

在使用ChatGLM3进行模型微调时,部分用户可能会遇到一个比较棘手的内存错误问题。这个错误通常表现为"double free or corruption"类型的崩溃,并伴随着一系列libc和libpthread相关的调用栈信息。本文将从技术角度深入分析这个问题的成因,并提供可行的解决方案。

错误现象分析

当用户执行微调代码中的trainer.train()方法时,程序可能会在训练刚开始时立即崩溃,控制台输出类似以下错误信息:

*** Error in `/home/user/.conda/envs/chatglm3/bin/python': double free or corruption (out): 0x00007f8a66f85bc0 ***
======= Backtrace: =========
/lib64/libc.so.6(+0x79a1c)[0x7f8a7562ba1c]
/lib64/libc.so.6(+0x7f498)[0x7f8a75631498]
/lib64/libc.so.6(+0x8007c)[0x7f8a7563207c]
/lib64/ld-linux-x86-64.so.2(_dl_deallocate_tls+0x42)[0x7f8a757ab6d2]
/lib64/libpthread.so.0(+0x7f32)[0x7f8a7576df32]
/lib64/libpthread.so.0(+0x8052)[0x7f8a7576e052]

这种错误属于内存管理相关的严重错误,通常表明程序尝试释放已经释放过的内存区域,或者内存区域已被破坏。

问题根源探究

经过实际案例分析和验证,这个问题通常与环境配置有关,而非ChatGLM3代码本身的问题。具体可能的原因包括:

  1. CUDA版本不匹配:用户环境中安装的CUDA版本与PyTorch或其他深度学习库编译时使用的CUDA版本不一致。例如,用户环境使用CUDA 11.7,而PyTorch可能是针对其他CUDA版本编译的。

  2. 系统库冲突:系统中安装的某些基础库(如libc、libpthread等)版本与Python环境或深度学习框架不兼容。

  3. 内存管理问题:在多线程环境下,某些内存操作可能引发竞争条件,导致内存被错误释放。

解决方案

针对上述问题根源,可以尝试以下解决方案:

  1. 检查并统一CUDA环境

    • 确认PyTorch版本与CUDA版本的对应关系
    • 使用nvcc --version检查当前CUDA版本
    • 使用conda list检查PyTorch等库的版本
    • 确保所有深度学习相关库都使用相同版本的CUDA
  2. 创建干净的虚拟环境

    conda create -n chatglm3_finetune python=3.10
    conda activate chatglm3_finetune
    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    pip install -r requirements.txt
    
  3. 调整内存相关设置

    • 尝试减小batch size
    • 检查是否有足够的内存资源
    • 在Linux系统上可以尝试设置export MALLOC_CHECK_=1来检测内存问题
  4. 系统级检查

    • 更新系统基础库
    • 检查是否有损坏的系统库
    • 考虑在不同机器上测试以排除硬件问题

预防措施

为了避免类似问题,建议在进行ChatGLM3微调前:

  1. 仔细阅读官方文档中的环境要求部分
  2. 使用官方推荐的CUDA和PyTorch版本组合
  3. 在开始正式训练前,先用小规模数据进行测试运行
  4. 保持开发环境的整洁,避免多个项目共用同一个环境

通过以上分析和解决方案,大多数情况下可以成功解决ChatGLM3微调过程中遇到的这类内存错误问题。如果问题仍然存在,建议收集更详细的错误日志和环境信息,以便进行更深入的分析。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
270
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
909
541
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4