ChatGLM3微调过程中遇到的内存错误分析与解决方案
2025-05-16 00:07:15作者:秋泉律Samson
在使用ChatGLM3进行模型微调时,部分用户可能会遇到一个比较棘手的内存错误问题。这个错误通常表现为"double free or corruption"类型的崩溃,并伴随着一系列libc和libpthread相关的调用栈信息。本文将从技术角度深入分析这个问题的成因,并提供可行的解决方案。
错误现象分析
当用户执行微调代码中的trainer.train()方法时,程序可能会在训练刚开始时立即崩溃,控制台输出类似以下错误信息:
*** Error in `/home/user/.conda/envs/chatglm3/bin/python': double free or corruption (out): 0x00007f8a66f85bc0 ***
======= Backtrace: =========
/lib64/libc.so.6(+0x79a1c)[0x7f8a7562ba1c]
/lib64/libc.so.6(+0x7f498)[0x7f8a75631498]
/lib64/libc.so.6(+0x8007c)[0x7f8a7563207c]
/lib64/ld-linux-x86-64.so.2(_dl_deallocate_tls+0x42)[0x7f8a757ab6d2]
/lib64/libpthread.so.0(+0x7f32)[0x7f8a7576df32]
/lib64/libpthread.so.0(+0x8052)[0x7f8a7576e052]
这种错误属于内存管理相关的严重错误,通常表明程序尝试释放已经释放过的内存区域,或者内存区域已被破坏。
问题根源探究
经过实际案例分析和验证,这个问题通常与环境配置有关,而非ChatGLM3代码本身的问题。具体可能的原因包括:
-
CUDA版本不匹配:用户环境中安装的CUDA版本与PyTorch或其他深度学习库编译时使用的CUDA版本不一致。例如,用户环境使用CUDA 11.7,而PyTorch可能是针对其他CUDA版本编译的。
-
系统库冲突:系统中安装的某些基础库(如libc、libpthread等)版本与Python环境或深度学习框架不兼容。
-
内存管理问题:在多线程环境下,某些内存操作可能引发竞争条件,导致内存被错误释放。
解决方案
针对上述问题根源,可以尝试以下解决方案:
-
检查并统一CUDA环境:
- 确认PyTorch版本与CUDA版本的对应关系
- 使用
nvcc --version检查当前CUDA版本 - 使用
conda list检查PyTorch等库的版本 - 确保所有深度学习相关库都使用相同版本的CUDA
-
创建干净的虚拟环境:
conda create -n chatglm3_finetune python=3.10 conda activate chatglm3_finetune pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install -r requirements.txt -
调整内存相关设置:
- 尝试减小batch size
- 检查是否有足够的内存资源
- 在Linux系统上可以尝试设置
export MALLOC_CHECK_=1来检测内存问题
-
系统级检查:
- 更新系统基础库
- 检查是否有损坏的系统库
- 考虑在不同机器上测试以排除硬件问题
预防措施
为了避免类似问题,建议在进行ChatGLM3微调前:
- 仔细阅读官方文档中的环境要求部分
- 使用官方推荐的CUDA和PyTorch版本组合
- 在开始正式训练前,先用小规模数据进行测试运行
- 保持开发环境的整洁,避免多个项目共用同一个环境
通过以上分析和解决方案,大多数情况下可以成功解决ChatGLM3微调过程中遇到的这类内存错误问题。如果问题仍然存在,建议收集更详细的错误日志和环境信息,以便进行更深入的分析。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92