ChatGLM3微调过程中遇到的内存错误分析与解决方案
2025-05-16 06:40:08作者:秋泉律Samson
在使用ChatGLM3进行模型微调时,部分用户可能会遇到一个比较棘手的内存错误问题。这个错误通常表现为"double free or corruption"类型的崩溃,并伴随着一系列libc和libpthread相关的调用栈信息。本文将从技术角度深入分析这个问题的成因,并提供可行的解决方案。
错误现象分析
当用户执行微调代码中的trainer.train()方法时,程序可能会在训练刚开始时立即崩溃,控制台输出类似以下错误信息:
*** Error in `/home/user/.conda/envs/chatglm3/bin/python': double free or corruption (out): 0x00007f8a66f85bc0 ***
======= Backtrace: =========
/lib64/libc.so.6(+0x79a1c)[0x7f8a7562ba1c]
/lib64/libc.so.6(+0x7f498)[0x7f8a75631498]
/lib64/libc.so.6(+0x8007c)[0x7f8a7563207c]
/lib64/ld-linux-x86-64.so.2(_dl_deallocate_tls+0x42)[0x7f8a757ab6d2]
/lib64/libpthread.so.0(+0x7f32)[0x7f8a7576df32]
/lib64/libpthread.so.0(+0x8052)[0x7f8a7576e052]
这种错误属于内存管理相关的严重错误,通常表明程序尝试释放已经释放过的内存区域,或者内存区域已被破坏。
问题根源探究
经过实际案例分析和验证,这个问题通常与环境配置有关,而非ChatGLM3代码本身的问题。具体可能的原因包括:
-
CUDA版本不匹配:用户环境中安装的CUDA版本与PyTorch或其他深度学习库编译时使用的CUDA版本不一致。例如,用户环境使用CUDA 11.7,而PyTorch可能是针对其他CUDA版本编译的。
-
系统库冲突:系统中安装的某些基础库(如libc、libpthread等)版本与Python环境或深度学习框架不兼容。
-
内存管理问题:在多线程环境下,某些内存操作可能引发竞争条件,导致内存被错误释放。
解决方案
针对上述问题根源,可以尝试以下解决方案:
-
检查并统一CUDA环境:
- 确认PyTorch版本与CUDA版本的对应关系
- 使用
nvcc --version检查当前CUDA版本 - 使用
conda list检查PyTorch等库的版本 - 确保所有深度学习相关库都使用相同版本的CUDA
-
创建干净的虚拟环境:
conda create -n chatglm3_finetune python=3.10 conda activate chatglm3_finetune pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install -r requirements.txt -
调整内存相关设置:
- 尝试减小batch size
- 检查是否有足够的内存资源
- 在Linux系统上可以尝试设置
export MALLOC_CHECK_=1来检测内存问题
-
系统级检查:
- 更新系统基础库
- 检查是否有损坏的系统库
- 考虑在不同机器上测试以排除硬件问题
预防措施
为了避免类似问题,建议在进行ChatGLM3微调前:
- 仔细阅读官方文档中的环境要求部分
- 使用官方推荐的CUDA和PyTorch版本组合
- 在开始正式训练前,先用小规模数据进行测试运行
- 保持开发环境的整洁,避免多个项目共用同一个环境
通过以上分析和解决方案,大多数情况下可以成功解决ChatGLM3微调过程中遇到的这类内存错误问题。如果问题仍然存在,建议收集更详细的错误日志和环境信息,以便进行更深入的分析。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355